Further characterizations of Sobolev spaces

Hoai-Minh Nguyen

Journal of the European Mathematical Society (2008)

  • Volume: 010, Issue: 1, page 191-229
  • ISSN: 1435-9855

Abstract

top
Let ( F n ) n be a sequence of non-decreasing functions from [ 0 , + ) into [ 0 , + ) . Under some suitable hypotheses of ( F n ) n , we will prove that if g L p ( N ) , 1 < p < + , satisfies lim inf n N N F n ( | g ( x ) - g ( y ) | ) / | x - y | N + p d x d y < + , then g W 1 , p ( N ) and moreover lim n N N F n ( | g ( x ) - g ( y ) | ) / | x - y | N + p d x d y = K N , p N | g ( x ) | p d x , where K N , p is a positive constant depending only on N and p . This extends some results in J. Bourgain and H-M. Nguyen [A new characterization of Sobolev spaces, C. R. Acad Sci. Paris, Ser. I 343 (2006) 75-80] and H-M. Nguyen [Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006) 689-720]. We also present some partial results concerning the case p = 1 and various open problems.

How to cite

top

Nguyen, Hoai-Minh. "Further characterizations of Sobolev spaces." Journal of the European Mathematical Society 010.1 (2008): 191-229. <http://eudml.org/doc/277478>.

@article{Nguyen2008,
abstract = {Let $(F_n)_\{n\in \mathbb \{N\}\}$ be a sequence of non-decreasing functions from $[0,+\infty )$ into $[0,+\infty )$. Under some suitable hypotheses of $(F_n)_\{n\in \mathbb \{N\}\}$, we will prove that if $g\in L^p(\mathbb \{R\}^N)$, $1<p<+\infty $, satisfies $\liminf _\{n\rightarrow \infty \}\int _\{\mathbb \{R\}^N\}\int _\{\mathbb \{R\}^N\}F_n(|g(x)-g(y)|)/|x-y|^\{N+p\}dxdy<+\infty $, then $g\in W^\{1,p\}(\mathbb \{R\}^N)$ and moreover $\lim _\{n\rightarrow \infty \}\int _\{\mathbb \{R\}^N\}\int _\{\mathbb \{R\}^N\}F_n(|g(x)-g(y)|)/|x-y|^\{N+p\}dxdy=K_\{N,p\}\int _\{\mathbb \{R\}^N\}|\nabla g(x)|^pdx$, where $K_\{N,p\}$ is a positive constant depending only on $N$ and $p$. This extends some results in J. Bourgain and H-M. Nguyen [A new characterization of Sobolev spaces, C. R. Acad Sci. Paris, Ser. I 343 (2006) 75-80] and H-M. Nguyen [Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006) 689-720]. We also present some partial results concerning the case $p=1$ and various open problems.},
author = {Nguyen, Hoai-Minh},
journal = {Journal of the European Mathematical Society},
keywords = {Sobolev spaces},
language = {eng},
number = {1},
pages = {191-229},
publisher = {European Mathematical Society Publishing House},
title = {Further characterizations of Sobolev spaces},
url = {http://eudml.org/doc/277478},
volume = {010},
year = {2008},
}

TY - JOUR
AU - Nguyen, Hoai-Minh
TI - Further characterizations of Sobolev spaces
JO - Journal of the European Mathematical Society
PY - 2008
PB - European Mathematical Society Publishing House
VL - 010
IS - 1
SP - 191
EP - 229
AB - Let $(F_n)_{n\in \mathbb {N}}$ be a sequence of non-decreasing functions from $[0,+\infty )$ into $[0,+\infty )$. Under some suitable hypotheses of $(F_n)_{n\in \mathbb {N}}$, we will prove that if $g\in L^p(\mathbb {R}^N)$, $1<p<+\infty $, satisfies $\liminf _{n\rightarrow \infty }\int _{\mathbb {R}^N}\int _{\mathbb {R}^N}F_n(|g(x)-g(y)|)/|x-y|^{N+p}dxdy<+\infty $, then $g\in W^{1,p}(\mathbb {R}^N)$ and moreover $\lim _{n\rightarrow \infty }\int _{\mathbb {R}^N}\int _{\mathbb {R}^N}F_n(|g(x)-g(y)|)/|x-y|^{N+p}dxdy=K_{N,p}\int _{\mathbb {R}^N}|\nabla g(x)|^pdx$, where $K_{N,p}$ is a positive constant depending only on $N$ and $p$. This extends some results in J. Bourgain and H-M. Nguyen [A new characterization of Sobolev spaces, C. R. Acad Sci. Paris, Ser. I 343 (2006) 75-80] and H-M. Nguyen [Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006) 689-720]. We also present some partial results concerning the case $p=1$ and various open problems.
LA - eng
KW - Sobolev spaces
UR - http://eudml.org/doc/277478
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.