Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3 : 2 : 1∗

Tiziana Durante; Taras A. Mel’nyk

ESAIM: Control, Optimisation and Calculus of Variations (2012)

  • Volume: 18, Issue: 2, page 583-610
  • ISSN: 1292-8119

Abstract

top
We consider quasilinear optimal control problems involving a thick two-level junction Ωε which consists of the junction body Ω0 and a large number of thin cylinders with the cross-section of order 𝒪(ε2). The thin cylinders are divided into two levels depending on the geometrical characteristics, the quasilinear boundary conditions and controls given on their lateral surfaces and bases respectively. In addition, the quasilinear boundary conditions depend on parameters ε, α, β and the thin cylinders from each level are ε-periodically alternated. Using the Buttazzo–Dal Maso abstract scheme for variational convergence of constrained minimization problems, the asymptotic analysis (as ε → 0) of these problems are made for different values of α and β and different kinds of controls. We have showed that there are three qualitatively different cases. Application for an optimal control problem involving a thick one-level junction with cascade controls is presented as well.

How to cite

top

Durante, Tiziana, and Mel’nyk, Taras A.. "Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3 : 2 : 1∗." ESAIM: Control, Optimisation and Calculus of Variations 18.2 (2012): 583-610. <http://eudml.org/doc/277820>.

@article{Durante2012,
abstract = {We consider quasilinear optimal control problems involving a thick two-level junction Ωε which consists of the junction body Ω0 and a large number of thin cylinders with the cross-section of order 𝒪(ε2). The thin cylinders are divided into two levels depending on the geometrical characteristics, the quasilinear boundary conditions and controls given on their lateral surfaces and bases respectively. In addition, the quasilinear boundary conditions depend on parameters ε, α, β and the thin cylinders from each level are ε-periodically alternated. Using the Buttazzo–Dal Maso abstract scheme for variational convergence of constrained minimization problems, the asymptotic analysis (as ε → 0) of these problems are made for different values of α and β and different kinds of controls. We have showed that there are three qualitatively different cases. Application for an optimal control problem involving a thick one-level junction with cascade controls is presented as well. },
author = {Durante, Tiziana, Mel’nyk, Taras A.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Homogenization; quasilinear optimal control problem; thick multilevel junction; asymptotic behavior; singular perturbation; homogenization},
language = {eng},
month = {7},
number = {2},
pages = {583-610},
publisher = {EDP Sciences},
title = {Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3 : 2 : 1∗},
url = {http://eudml.org/doc/277820},
volume = {18},
year = {2012},
}

TY - JOUR
AU - Durante, Tiziana
AU - Mel’nyk, Taras A.
TI - Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3 : 2 : 1∗
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2012/7//
PB - EDP Sciences
VL - 18
IS - 2
SP - 583
EP - 610
AB - We consider quasilinear optimal control problems involving a thick two-level junction Ωε which consists of the junction body Ω0 and a large number of thin cylinders with the cross-section of order 𝒪(ε2). The thin cylinders are divided into two levels depending on the geometrical characteristics, the quasilinear boundary conditions and controls given on their lateral surfaces and bases respectively. In addition, the quasilinear boundary conditions depend on parameters ε, α, β and the thin cylinders from each level are ε-periodically alternated. Using the Buttazzo–Dal Maso abstract scheme for variational convergence of constrained minimization problems, the asymptotic analysis (as ε → 0) of these problems are made for different values of α and β and different kinds of controls. We have showed that there are three qualitatively different cases. Application for an optimal control problem involving a thick one-level junction with cascade controls is presented as well.
LA - eng
KW - Homogenization; quasilinear optimal control problem; thick multilevel junction; asymptotic behavior; singular perturbation; homogenization
UR - http://eudml.org/doc/277820
ER -

References

top
  1. D. Blanchard and A. Gaudiello, Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem. ESAIM : COCV9 (2003) 449–460.  Zbl1071.35012
  2. D. Blanchard, A. Gaudiello and G. Griso, Junction of a periodic family of elastic rods with 3d plate. Part I. J. Math. Pures Appl.88 (2007) 1–33(Part I); 88 (2007) 149–190 (Part II).  Zbl1116.74038
  3. D. Blanchard, A. Gaudiello and T.A. Mel’nyk, Boundary homogenization and reduction of dimention in a Kirchhoff-Love plate. SIAM J. Math. Anal.39 (2008) 1764–1787.  Zbl1149.74037
  4. G. Buttazzo, Γ-convergence and its applications to some problem in the calculus of variations, in School on Homogenization, ICTP, Trieste, 1993 (1994) 38–61.  
  5. G. Buttazzo and G. Dal Maso, Γ-convergence and optimal control problems. J. Optim. Theory Appl.38 (1982) 385–407.  Zbl0471.49012
  6. G.A. Chechkin, T.P. Chechkina, C. D’Apice, U. De-Maio and T.A. Mel’nyk, Asymptotic analysis of a boundary value problem in a cascade thick junction with a random transmission zone. Appl. Anal.88 (2009) 1543–1562.  Zbl1180.35071
  7. U. De Maio, A. Gaudiello and C. Lefter, optimal control for a parabolic problem in a domain with highly oscillating boundary. Appl. Anal.83 (2004) 1245–1264.  Zbl1082.49005
  8. U. De Maio, T. Durante and T.A. Mel’nyk, Asymptotic approximation for the solution to the Robin problem in a thick multi-level junction. Math. Models Methods Appl. Sci.15 (2005) 1897–1921.  Zbl1093.35011
  9. Z. Denkowski and S. Mortola, Asymptotic behavior of optimal solutions to control problems for systems described by differential inclusions corresponding to partial differential equations. J. Optim. Theory Appl.78 (1993) 365–391.  Zbl0796.49008
  10. T. Durante and T.A. Mel’nyk, Asymptotic analysis of an optimal control problem involving a thick two-level junction with alternate type of controls. J. Optim. Theory Appl.144 (2010) 205–225.  Zbl1185.49027
  11. T. Durante, L. Faella and C. Perugia, Homogenization and behaviour of optimal controls for the wave equation in domains with oscillating boundary. Nonlinear Differ. Equ. Appl.14 (2007) 455–489.  Zbl1149.35312
  12. S. Kesavan and J. Saint Jean Paulin, Optimal control on perforated domains. J. Math. Anal. Appl.229 (1999) 563–586.  Zbl0919.49005
  13. Y.I. Lavrentovich, T.V. Knyzkova and V.V. Pidlisnyuk, The potential of application of new nanostructural materials for degradation of pesticides in water, in Proceedings of the 7th Int. HCH and Pesticides Forum Towards the establishment of an obsolete POPS/pecticides stockpile fund for Central and Eastern European countries and new independent states, Kyiv, Ukraine (2003) 167–169.  
  14. M. Lenczner, Multiscale model for atomic force microscope array mechanical behavior. Appl. Phys. Lett.90 (2007) 091908; doi : 10.1063/1.2710001.  
  15. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971).  
  16. S.E. Lyshevshi, Mems and Nems : Systems, Devices, and Structures. CRC Press, Boca Raton, FL (2002).  
  17. T.A. Mel’nyk, Homogenization of the Poisson equation in a thick periodic junction. Z. f. Anal. Anwendungen18 (1999) 953–975.  Zbl0938.35021
  18. T.A. Mel’nyk, Homogenization of a perturbed parabolic problem in a thick periodic junction of type 3  : 2  : 1. Ukr. Math. J.52 (2000) 1737–1749.  
  19. T.A. Mel’nyk, Homogenization of a boundary-value problem with a nonlinear boundary condition in a thick junction of type 3  : 2  : 1. Math. Models Meth. Appl. Sci.31 (2008) 1005–1027.  
  20. T.A. Mel’nyk and G.A. Chechkin, Asymptotic analysis of boundary value problems in thick three-dimensional multi-level junctions. Math. Sb. 2003 (2009) 49–74(in Russian); English transl. : Sb. Math.200 (2009) 357–383.  Zbl1184.35035
  21. T.A. Mel’nyk and S.A. Nazarov, Asymptotic structure of the spectrum in the problem of harmonic oscillations of a hub with heavy spokes. Dokl. Akad. Nauk Russia333 (1993) 13–15(in Russian); English transl. : Russian Acad. Sci. Dokl. Math.48 (1994) 28–32.  
  22. T.A. Mel’nyk and S.A. Nazarov, Asymptotic structure of the spectrum of the Neumann problem in a thin comb-like domain. C.R. Acad Sci. Paris, Ser. 1319 (1994) 1343–1348.  Zbl0814.73017
  23. T.A. Mel’nyk and S.A. Nazarov, Asymptotics of the Neumann spectral problem solution in a domain of thick comb type. Trudy Seminara imeni I.G. Petrovskogo19 (1996) 138–173(in Russian); English transl. : J. Math. Sci.85 (1997) 2326–2346.  
  24. T.A. Mel’nyk and D. Yu. Sadovyj, Homogenization of elliptic problems with alternating boundary conditions in a thick two-level junction of type 3 :2 :2. J. Math. Sci.165 (2010) 67–90.  
  25. T.A. Mel’nyk, Iu.A. Nakvasiuk and W.L. Wendland, Homogenization of the Signorini boundary-value problem in a thick junction and boundary integral equations for the homogenized problem. Math. Meth. Appl. Sci.34 (2011) 758–775.  Zbl1217.35019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.