Stabilization of walls for nano-wires of finite length

Gilles Carbou; Stéphane Labbé

ESAIM: Control, Optimisation and Calculus of Variations (2012)

  • Volume: 18, Issue: 1, page 1-21
  • ISSN: 1292-8119

Abstract

top
In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.

How to cite

top

Carbou, Gilles, and Labbé, Stéphane. "Stabilization of walls for nano-wires of finite length." ESAIM: Control, Optimisation and Calculus of Variations 18.1 (2012): 1-21. <http://eudml.org/doc/277825>.

@article{Carbou2012,
abstract = {In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.},
author = {Carbou, Gilles, Labbé, Stéphane},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Landau-Lifschitz equation; control; stabilization; one dimensional model; -convergence arguments; wall profiles},
language = {eng},
month = {2},
number = {1},
pages = {1-21},
publisher = {EDP Sciences},
title = {Stabilization of walls for nano-wires of finite length},
url = {http://eudml.org/doc/277825},
volume = {18},
year = {2012},
}

TY - JOUR
AU - Carbou, Gilles
AU - Labbé, Stéphane
TI - Stabilization of walls for nano-wires of finite length
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2012/2//
PB - EDP Sciences
VL - 18
IS - 1
SP - 1
EP - 21
AB - In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.
LA - eng
KW - Landau-Lifschitz equation; control; stabilization; one dimensional model; -convergence arguments; wall profiles
UR - http://eudml.org/doc/277825
ER -

References

top
  1. F. Alouges, T. Rivière and S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM : COCV8 (2002) 31–68.  Zbl1092.82047
  2. W.F. Brown, Micromagnetics. Interscience Publisher, John Willey and Sons, New York (1963).  
  3. G. Carbou, Regularity for critical points of a nonlocal energy. Calc. Var.5 (1997) 409–433.  Zbl0889.58022
  4. G. Carbou, Thin layers in micromagnetism. Math. Models Methods Appl. Sci.11 (2001) 1529–1546.  Zbl1012.82031
  5. G. Carbou and P. Fabrie, Time average in micromagnetism. J. Differ. Equ.147 (1998) 383–409.  Zbl0931.35170
  6. G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain. Differential Integral Equations14 (2001) 213–229.  Zbl1161.35421
  7. G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in R3. Commun. Appl. Anal.5 (2001) 17–30.  Zbl1084.35519
  8. G. Carbou and S. Labbé, Stability for static walls in ferromagnetic nanowires. Discrete Continous Dyn. Syst. Ser. B6 (2006) 273–290.  Zbl1220.82163
  9. G. Carbou, S. Labbé and E. Trélat, Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S1 (2008) 51–59.  Zbl1310.82059
  10. A. DeSimone, R.V. Kohn, S. Müller and F. Otto, Magnetic microstructures – a paradigm of multiscale problems, in ICIAM 99 (Edinburgh), Oxford Univ. Press, Oxford (2000) 175–190.  Zbl0991.82038
  11. L. Halpern and S. Labbé, Modélisation et simulation du comportement des matériaux ferromagnétiques. Matapli66 (2001) 70–86.  
  12. T. Kapitula, Multidimensional stability of planar travelling waves. Trans. Amer. Math. Soc.349 (1997) 257–269.  Zbl0866.35021
  13. K. Kühn, Travelling waves with a singularity in magnetic nanowires. Commun. Partial Diff. Equ.34 (2009) 722–764.  Zbl1178.82086
  14. S. Labbé, Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques. Thèse de l’Université Paris 13, Paris (1998).  
  15. S. Labbé and P.-Y. Bertin, Microwave polarisability of ferrite particles with non-uniform magnetization. J. Magn. Magn. Mater.206 (1999) 93–105.  
  16. T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Commun. Partial Diff. Equ.28 (2003) 249–269.  Zbl1094.35125
  17. D. Sanchez, Méthodes asymptotiques en ferromagnétisme. Thèse de l’Université Bordeaux 1, Bordeaux (2004).  
  18. A. Thiaville, J.M. Garcia and J. Miltat, Domain wall dynamics in nanowires. J. Magn. Magn. Mater.242–245 (2002) 1061–1063.  
  19. A. Visintin, On Landau Lifschitz equation for ferromagnetism. Japan Journal of Applied Mathematics1 (1985) 69–84.  Zbl0613.35018
  20. H. Wynled, Ferromagnetism, Encyclopedia of PhysicsXVIII/2. Springer-Verlag, Berlin (1966).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.