Three complexity functions
Sébastien Ferenczi; Pascal Hubert
RAIRO - Theoretical Informatics and Applications (2012)
- Volume: 46, Issue: 1, page 67-76
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- P. Alesssandri, Codages de rotations et basses complexités. Université Aix-Marseille II, Ph.D. thesis (1996).
- A. Avila and G. Forni, Weak mixing for interval exchange maps and translation flows, Ann. Math. (2)165 (2007) 637 − 664.
- G. Castiglione, A. Restivo and S. Salemi, Patterns in words and languages. Discrete Appl. Math.144 (2004) 237 − 246.
- J. Chaika, Topological mixing for some residual sets of interval exchange transformations. Preprint (2011).
- I.P. Cornfeld, S.V. Fomin and Y.G. Sinai, Ergodic theory. Translated from the Russian by A.B. Sosinski, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York 245 (1982) x+486.
- E.M. Coven and G.A. Hedlund, Sequences with minimal block growth. Math. Syst. Theory7 (1973) 138–153.
- S. Ferenczi, Complexity of sequences and dynamical systems. Combinatorics and number theory (Tiruchirappalli, 1996). Discrete Math.206 (1999) 145–154.
- T. Kamae, Uniform sets and complexity. Discrete Math.309 (2009) 3738 − 3747.
- T. Kamae, Behavior of various complexity functions. Preprint (2011).
- T. Kamae and L. Zamboni, Sequence entropy and the maximal pattern complexity of infinite words. Ergod. Theory Dyn. Syst.22 (2002) 1191–1199.
- T. Kamae and L. Zamboni, Maximal pattern complexity for discrete systems. Ergod. Theory Dyn. Syst.22 (2002) 1201–1214.
- T. Kamae, H. Rao, B. Tan and Y.-M. Xue, Super-stationary set, subword problem and the complexity. Discrete Math.309 (2009) 4417–4427.
- M.S. Keane, Non-ergodic interval exchange transformations. Israe"l J. Math. 26 (1977), 188–196.
- D. Lind and B. Marcus, An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge (1995) xvi+495.
- M. Morse and G.A. Hedlund, Symbolic dynamics. Amer. J. Math.60 (1938) 815–866.
- M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math.62 (1940) 1 − 42.
- N. Pytheas-Fogg, Substitutions in dynamics, arithmetics and combinatorics. Lect. Notes Math.1794, edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. Springer-Verlag, Berlin (2002).
- G. Rote, Sequences with subword complexity 2n. J. Number Theory46 (1994) 196–213.