Rank tests for scale: Hájek's influence and recent developments

Hermann Witting

Kybernetika (1995)

  • Volume: 31, Issue: 3, page 269-291
  • ISSN: 0023-5954

How to cite

top

Witting, Hermann. "Rank tests for scale: Hájek's influence and recent developments." Kybernetika 31.3 (1995): 269-291. <http://eudml.org/doc/27871>.

@article{Witting1995,
author = {Witting, Hermann},
journal = {Kybernetika},
keywords = {rank tests; two-sample dispersion problems; dispersion orderings},
language = {eng},
number = {3},
pages = {269-291},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Rank tests for scale: Hájek's influence and recent developments},
url = {http://eudml.org/doc/27871},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Witting, Hermann
TI - Rank tests for scale: Hájek's influence and recent developments
JO - Kybernetika
PY - 1995
PB - Institute of Information Theory and Automation AS CR
VL - 31
IS - 3
SP - 269
EP - 291
LA - eng
KW - rank tests; two-sample dispersion problems; dispersion orderings
UR - http://eudml.org/doc/27871
ER -

References

top
  1. K. Behnen, Asymptotic optimality and ARE of certain rank-order tests under contiguity, Ann. Math. Statist. 42 (1971), 325-329. (1971) Zbl0224.62019MR0275593
  2. K. Behnen, G. Neuhaus, Rank Tests with Estimated Scores and Their Application, Teubner, Stuttgart 1989. (1989) Zbl0692.62041MR1003116
  3. P. J. Bickel, E. L. Lehmann, Descriptive statistics for nonparametric models IV. Spread, In: Contributions to Statistics, The Hájek Memorial Volume (J. Jurečková, ed.), Academia, Prague 1979, pp. 33-40. (1979) Zbl0415.62015MR0561256
  4. H. U. Burger, Nichtparametrische Tests für Zweistichproben-Dispersionsmodelle, Ph.D. Dissertation, Freiburg i.Br. 1991. (1991) Zbl0746.62049
  5. H. U. Burger, Dispersion orderings with applications to nonparametric tests, Statist. Probab. Lett. 16 (1993), 1-9. (1993) Zbl0764.62041MR1208492
  6. H. U. Burger, Nonparametric tests for two-sample dispersion problems: Problems with known dispersion centers, Nonparametric Statistics 2 (1993), 249-269. (1993) MR1241533
  7. H. U. Burger U. Mülller-Funk, H. Witting, On locally optimal nonparametric tests, Methods and Models of Operations Research 56 (1992), 163-184. (1992) MR1155838
  8. J. V. Deshpande, K. Kusum, A test for the nonparametric two-sample scale problem, Austral. J. Statist. 26 (1984), 16-24. (1984) Zbl0555.62038MR0746012
  9. B. S. Duran, A survey of nonparametric tests for scale, Comm. Statist. Theory Methods A5 (1976), 1287-1312. (1976) Zbl0362.62044MR0445707
  10. J. Hájek, Asymptotically most powerful rank-order tests, Ann. Math. Statist. 33 (1962), 1124-1147. (1962) MR0143304
  11. J. Hájek, Miscellaneous problems of rank test theory, In: Nonparametric Technics (M.L. Puri, ed.), Cambridge University Press 1970, pp. 3-17. (1970) MR0279947
  12. J. Hájek, Z. Šidák, Theory of Rank Tests, Academic Press, New York 1967. (1967) MR0229351
  13. W. Hoeffding, 'Optimum' nonparametric tests, In: Proc. of the Second Berkeley Symposium on Mathematical Statistics and Probability (J. Neyman, ed.), Berkeley University Press 1952, pp. 83-92. (1952) MR0044799
  14. J. Jurečková, Asymptotic linearity of a rank statistic in regression parameter, Ann. Math. Statist. 40 (1969), 1889-1900. (1969) MR0248931
  15. J. Jurečková, Nuisance medians in rank testing scale, In: Contributions to Statistics, The Hajek Memorial Volume (J. Jurečková, ed.), Academia, Prague 1979, pp. 109-117. (1979) MR0561264
  16. T. Kamae U. Krengel, G. L. O'Brien, Stochastic inequalities on partially ordered spaces, Ann. Probab. 5 (1977), 899-912. (1977) MR0494447
  17. E. L. Lehmann, Testing Statistical Hypotheses, Second edition. Wiley, New York 1986. (1986) Zbl0608.62020MR0852406
  18. L. E. Moses, Rank tests of dispersion, Ann. Math. Statist. 34 (1963), 973-983. (1963) Zbl0203.21104MR0154370
  19. U. Müller-Funk F. Pukelsheim, H. Witting, Locally most powerful tests for two-sided hypotheses, In: Proc. 4th Pannonian Symp. on Math. Statist. (F. Konecny et al., eds.), Akademia Budapest 1983, pp. 31-56. (1983) MR0851017
  20. J. Neyman, Optimal asymptotic tests of composite statistical hypotheses, In: Probability and Statistics; The Harald Cramer Volume (U. Grenander, ed.), Wiley, New York 1959, pp. 213-234. (1959) Zbl0104.12602MR0112201
  21. J. Pfanzagl, Contributions to a General Asymptotic Statistical Theory, (Lecture Notes in Statist. 13), Springer, New York 1982. (1982) Zbl0512.62001MR0675954
  22. H. Raghavachari, The two-sample scale problem when locations are unknown, Ann. Math. Statist. 36 (1965), 1236-1242. (1965) Zbl0147.18701MR0178538
  23. W. Schäfer, Nicht-parametrische Tests für Skalenmodelle im Zweistichprobenproblem, Ph.D. Dissertation, Freiburg i.Br. 1979. (1979) 
  24. H. Witting, Mathematische Statistik I: Parametrische Verfahren bei festem Stichprobenumfang, Teubner, Stuttgart 1985. (1985) Zbl0581.62001MR0943833
  25. H. Witting, U. Müller-Funk, Mathematische Statistik II: Asymptotische Statistik: Parametrische Statistik und nichtparametrische Modelle, Teubner, Stuttgart 1995. (1995) MR1363716
  26. H. Witting, U. Müller-Funk, Mathematische Statistik III: Prozeßapproximationen, Differentiationsansätze und nichtparametrische Testprobleme, Teubner, Stuttgart, in preparation. MR1363716

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.