Jaroslav Hájek and asymptotic theory of rank tests

Jana Jurečková

Kybernetika (1995)

  • Volume: 31, Issue: 3, page 239-250
  • ISSN: 0023-5954

How to cite

top

Jurečková, Jana. "Jaroslav Hájek and asymptotic theory of rank tests." Kybernetika 31.3 (1995): 239-250. <http://eudml.org/doc/27878>.

@article{Jurečková1995,
author = {Jurečková, Jana},
journal = {Kybernetika},
keywords = {asymptotic theory of rank tests; extension of Hajek's rank score process; linear model},
language = {eng},
number = {3},
pages = {239-250},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Jaroslav Hájek and asymptotic theory of rank tests},
url = {http://eudml.org/doc/27878},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Jurečková, Jana
TI - Jaroslav Hájek and asymptotic theory of rank tests
JO - Kybernetika
PY - 1995
PB - Institute of Information Theory and Automation AS CR
VL - 31
IS - 3
SP - 239
EP - 250
LA - eng
KW - asymptotic theory of rank tests; extension of Hajek's rank score process; linear model
UR - http://eudml.org/doc/27878
ER -

References

top
  1. J. Hájek, Some extensions of the Wald-Wofowitz-Noether theorem, Ann. Math. Statist. 32 (1961), 506-523. (1961) MR0130707
  2. J. Hájek, Asymptotically most powerful rank order tests, Ann. Math. Statist. 33 (1962), 1124-1147. (1962) MR0143304
  3. J. Hájek, Extension of the Kolmogorov-Smirnov test to the regression alternatives. Bernoulli-Bayes-Laplace, In: Proc. Internat. Research Seminar (J. Neyman and L. LeCam, eds.), Springer-Verlag, Berlin 1965, pp. 45-60. (1965) MR0198622
  4. J. Hájek, Locally most powerful tests of independence, In: Studies in Math. Statist. (K. Sarkadi and I. Vincze, eds.), Akademiai Kiado, Budapest 1968, pp. 45-51. (1968) MR0233473
  5. J. Hájek, Some new results in the theory of rank tests, In: Studies in Math. Statist. (K. Sarkadi and I. Vincze, eds.), Akademiai Kiado, Budapest 1968, pp. 53-55. (1968) MR0231501
  6. J. Hájek, Asymptotic normality of simple linear rank statistics under alternatives, Ann. Math. Statist. 39 (1968), 325-346. (1968) MR0222988
  7. J. Hájek, A Course in Nonparametric Statistics, Holden-Day, San Francisco 1969. (1969) MR0246467
  8. J. Hájek, Miscellaneous problems of rank test theory, In: Nonparam. Techniques in Statist. Inference (M.L. Puri, ed.), Cambridge Univ. Press 1970, pp. 3-19. (1970) MR0279947
  9. J. Hájek, Asymptotic sufficiency of the vector of ranks in the Bahadur sense, Ann. Statist. 2 (1974), 75-83. (1974) MR0356355
  10. J. Hájek, Z. Šidák, Theory of Rank Tests, Academia, Prague and Academic Press, New York 1967. (Russian translation: Nauka, Moscow 1971.) (1967) MR0229351
  11. J. Hájek, V. Dupač, Asymptotic normality of simple linear rank statistics under alternatives II, Ann. Math. Statist. 40 (1969), 1992-2017. (1969) MR0253487
  12. J. Hájek, V. Dupač, Asymptotic normality of the Wilcoxon statistic under divergent alternatives, Zastos. Mat. 10 (1969), 171-178. (1969) MR0258171
  13. H. Chernoff, I. R. Savage, Asymptotic normahty and efficiency of certain nonparametric test statistics, Ann. Math. Statist. 29 (1958), 972-994. (1958) MR0100322
  14. M. D. Donsker, Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Statist. 23 (1952), 277-281. (1952) Zbl0046.35103MR0047288
  15. J. L. Doob, Heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Statist. 20 (1949), 393-403. (1949) Zbl0035.08901MR0030732
  16. M. Driml, Convergence of compact measures on metric spaces, In: Trans. 2nd Prague Conference on Inform. Theory, NČSAV, Prague 1959, pp. 71-92. (1959) MR0125929
  17. M. Dwass, On the asymptotic normahty of certain rank order statistics, Ann. Math. Statist. 24 (1953), 303-306. (1953) MR0055628
  18. M. Dwass, On the asymptotic normahty of some statistics used in non-parametric setup, Ann. Math. Statist. 26 (1955), 334-339. (1955) MR0069447
  19. Z. Govindarajulu L. LeCam, M. Raghavachari, Generalizations of theorems of Chernoff and Savage on the asymptotic normality of test statistics, In: Proc. 5th Berkeley Symp. Math. Statist. Probab. 1 (1966), pp. 609-638. (1966) MR0214193
  20. C. Gutenbrunner, J. Jurečková, Regression rank scores and regression quantiles, Ann. Statist. 20 (1992), 305-330. (1992) MR1150346
  21. C. Gutenbrunner J. Jurečková R. Koenker, S. Portnoy, Tests of linear hypotheses based on regression rank scores, J. Nonpar. Statist. 2 (1993), 307-331. (1993) MR1256383
  22. W. Hoeffding, A combinatorial central hmit theorem, Ann. Math. Statist. 22 (1951) 558-566. (1951) MR0044058
  23. J. Jurečková, Uniform asymptotic linearity of regression rank scores process, In: Nonpar. Statist. Rel. Topics (A. K. Md. E. Saleh, ed.), Elsevier Sci. Publ. 1992, pp. 217-228. (1992) MR1226726
  24. J. Jurečková, Tests of Kolmogorov-Smirnov type based on regression rank scores, In: Trans. 11th Prague Conference on Inform. Theory (J.A.Visek, ed.), Academia, Prague and Kluwer Acad. Publ. 1992, pp. 41-49. (1992) 
  25. R. Koenker, G. Bassett, Regression quantiles, Econometrica 46 (1978), 33-50. (1978) Zbl0373.62038MR0474644
  26. M. Motoo, On the Hoeffding's combinatorial central limit theorem, Ann. Inst. Statist. Math. 5 (1957), 145-154. (1957) Zbl0084.13802MR0089560
  27. G. E. Noether, On a theorem of Wald and Wolfowitz, Ann. Math. Statist. 20 (1949), 455-458. (1949) 
  28. Ju. V. Prochorov, Convergence of stochastic processes and limiting theorems of probability theory, Theory Probab. 1 (1956), 177-238. (1956) 
  29. R. Pyke, G. R. Shorack, Weak convergence of a two-sample empirical process and anew approach to Chernoff-Savage theorems, Ann. Math. Statist. 59(1968), 755-771. (1968) 
  30. M. Raghavachari, On a theorem of Bahadur on the rate of convergence of tests statistics, Ann. Math. Statist. 41 (1970), 1695-1699. (1970) 
  31. D. Ruppert, R. J. Carroll, Trimmed least squares estimation in the linear model, J. Amer. Statist. Assoc. 15 (1980), 828-838. (1980) Zbl0459.62055
  32. A. Wald, J. Wolfowitz, Statistical tests based on permutations of the observations, Ann. Math. Statist. 15 (1944), 358-372. (1944) Zbl0063.08124
  33. G. Woodworth, Large deviations and Bahadur efficiency in linear rank statistic, Ann. Math. Statist. 41 (1970), 251-283. (1970) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.