The Hájek asymptotics for finite population sampling and their ramifications

Pranab Kumar Sen

Kybernetika (1995)

  • Volume: 31, Issue: 3, page 251-268
  • ISSN: 0023-5954

How to cite

top

Sen, Pranab Kumar. "The Hájek asymptotics for finite population sampling and their ramifications." Kybernetika 31.3 (1995): 251-268. <http://eudml.org/doc/27879>.

@article{Sen1995,
author = {Sen, Pranab Kumar},
journal = {Kybernetika},
keywords = {unequal probability sampling; finite population sampling; equal probability sampling; invariance principles; central limit theorems; asymptotics; review; martingale formulations},
language = {eng},
number = {3},
pages = {251-268},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The Hájek asymptotics for finite population sampling and their ramifications},
url = {http://eudml.org/doc/27879},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Sen, Pranab Kumar
TI - The Hájek asymptotics for finite population sampling and their ramifications
JO - Kybernetika
PY - 1995
PB - Institute of Information Theory and Automation AS CR
VL - 31
IS - 3
SP - 251
EP - 268
LA - eng
KW - unequal probability sampling; finite population sampling; equal probability sampling; invariance principles; central limit theorems; asymptotics; review; martingale formulations
UR - http://eudml.org/doc/27879
ER -

References

top
  1. T.W. Anderson, A modification of the sequential probibility ratio test to reduce the sample size, Ann. Math. Statist. 31 (1960), 165-197. (1960) MR0116441
  2. S. K. Chatterjee, P. K. Sen, Nonparametric tests for the bivariate two-sample location problem, Calcutta Statist. Assoc. Bulł. 13 (1964), 18-58. (1964) MR0192606
  3. J. L. Doob, Heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Statist. 20 (1949), 393-403. (1949) Zbl0035.08901MR0030732
  4. J. Dupačová, A note on rejective sampling, In: Contributions to Statistics (J. Hájek Memorial Volume), (J. Jurečková, ed.), Academia, Prague and Reidel, Dordrecht 1979, pp. 72-78. (1979) MR0561260
  5. J. Hájek, Optimum strategy and other problems in probabiłity sampling, Časopis pro pěstování mat. 84 (1959), 387-423. (1959) MR0121897
  6. J. Hájek, Some extensions of the Wald-Wolfowitz-Noether theorem, Ann. Math. Statist. 32 (1961), 506-523. (1961) MR0130707
  7. J. Hájek, Asymptotically most powerful rank order tests, Ann. Math. Statist. 33 (1962), 1124-1147. (1962) MR0143304
  8. J. Hájek, Asymptotic theory of rejective sampling with varying probabilities from a finite population, Ann. Math. Statist. 35 (1964), 1491-1523. (1964) MR0178555
  9. J. Hájek, Extensions of the Kolmogorov-Smirnov tests to regression alternatives, In: Proc. Bernoulli-Bayes-Laplace Seminar, Berkeley (L. LeCam, ed.), Univ. of Calif. Press 1965, pp. 45-60. (1965) MR0198622
  10. J. Hájek, Asymptotic normality of simple linear rank statistics under alternatives, Ann. Math. Statist. 39 (1968), 325-346. (1968) MR0222988
  11. J. Hájek, Asymptotic theory of sampling with varying probabilities without replacement, In: Proc. Prague Symp. Asymp. Statist. 1973, pp. 127-138. (1973) MR0400487
  12. J. Hájek, Sampling from a Finite Population, Marcel Dekker, New York 1981. (1981) MR0627744
  13. J. Hájek, A. Rényi, Generalization of an inequality of Kolmogorov, Acta. Math. Acad. Sci. Hung. 6 (1955), 281. (1955) MR0076207
  14. J. Hájek, Z. Šidák, Theory of Rank Tests, Academia, Prague 1967. (1967) MR0229351
  15. W. Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Statist. 19 (1948), 293-325. (1948) Zbl0032.04101MR0026294
  16. W. Hoeffding, A combinatorial central limit theorem, Ann Math. Statist. 22 (1951), 558-566. (1951) Zbl0044.13702MR0044058
  17. L. Holst, Asymptotic normality in a generalized occupancy problem, Z. Wahrsch. verw. Geb. 21 (1972), 109-120. (1972) Zbl0213.20301MR0315762
  18. S. Karlin, Inequalities for symmetric sampling plans I, Ann. Statist. 2 (1974), 1065-1094. (1974) MR0373085
  19. W. G. Madow, On the limiting distributions of estimates based on samples from finite universes, Ann. Math. Statist. 19 (1948), 535-545. (1948) Zbl0037.08602MR0029136
  20. H. Majumdar, P. K. Sen, Invariance principles for jackknifing U-statistics for finite population sampling and some applications, Comm. Statist. A7 (1978), 1007-1025. (1978) Zbl0401.62067MR0515165
  21. M. Motoo, On the Hoeffding's combinatorial central limit theorem, Ann. Inst. Statist. Math. 8 (1957), 145-154. (1957) Zbl0084.13802MR0089560
  22. H. K. Nandi, P. K. Sen, On the properties of U-statistics when the observations are not independent. Part II. Unbiased estimation of the parameters of a finite population, Calcutta Statist. Assoc. Bull. 12 (1963), 125-143. (1963) MR0161418
  23. G. E. Noether, On a theorem by Wald and Wolfowitz, Ann. Math. Statist. 20 (1949), 455-458. (1949) Zbl0034.22601MR0031670
  24. Z. Pгášková, Rate of convergence for simple estimate in the rejective sampling, In: Probability and Statistical Inference (W. Grossmann et al., eds.), Reidel, Dordrecht 1982, pp. 307-317. (1982) MR0668227
  25. Z. Prášková, On the probability of very large deviations for the rejective sampling, In: Asymptotic Statistics 2, Proc. 3rd Prague Symp. on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), North-Holland, Amsterdam 1984, pp. 387-389. (1984) MR0785417
  26. Z. Prášková, On the rate of convergence in Sampford-Durbin sampling from a finite population, Statist. Decisions 2 (1984), 339-350. (1984) MR0861388
  27. Z. Prášková, On the convergence to the Poisson distribution in rejective sampling from a finite population, In: Probability and Mathematical Statistics with Applications (Visegrad 1985, W. Grossmann et al. eds.), Reidel, Dordrecht 1985, pp. 285-294. (1985) MR0956706
  28. Z. Prášková, Sampling from a finite set of random variables: The Berry-Eseen bound for the studentized mean, In: Proc. 4th Prague Symp. on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Charles University, Prague 1988, pp. 67-81. (1988) MR1051428
  29. Z. Prášková, A note on Sampford-Durbin sampling, Comment. Math. Univ. Carolinae 31 (1990), 367-372. (1990) MR1077907
  30. M. L. Puri, P. K. Sen, Nonparametric Methods in Multivariate Analysis, Wiley, New York 1971. (1971) Zbl0237.62033MR0298844
  31. B. Rosen, Asymptotic normality in a coupon collector's problem, Zeit. Wahrsch. verw. Geb. 15 (1969), 256-279. (1969) Zbl0176.48103MR0266273
  32. B. Rosen, On the coupon collectors waiting time, Ann. Math. Statist. 41 (1970), 1952-1969. (1970) MR0268929
  33. B. Rosen, Asymptotic theory for successive sampling with varying probabilities without replacement, I, II, Ann. Math. Statist. 43 (1972), 373-397, 748-776. (1972) Zbl0246.60018MR0321223
  34. M. R. Sampford, On sampling without replacement with unequal probabilities of selection, Biometrika 54 (1967), 499-513. (1967) MR0223051
  35. M. R. Sampford, A comparison of some possible methods of sampling from smallish populations, with units of unequal size, In: New Developments in Survey Sampling (N.L. Johnson and H. Smith, eds.), Wiley, New York 1969. (1969) 
  36. P. K. Sen, The Hájek-Renyi inequality for sampling from a finite population, Sankhya A 32 (1970), 181-188. (1970) Zbl0216.22002
  37. P. K. Sen, Finite population sampling and weak convergence to a Brownian bridge, Sankya A 34 (1972), 85-90. (1972) Zbl0252.62010MR0345270
  38. P. K. Sen, Invariance principles for the coupon collector's problem: A martingale approach, Ann. Statist. 7 (1979), 372-380. (1979) Zbl0411.60035MR0520246
  39. P. K. Sen, Weak convergence of some quantile processes arising in progressively censored tests, Ann. Statist. 7 (1979), 414-431. (1979) Zbl0405.62069MR0520250
  40. P. K. Sen, Limit theorems for an extended coupon collector's problem and for successive sampling with varying probabilities, Calcutta Statist. Assoc. Bull. 29 (1980), 113-132. (1980) MR0614168
  41. P. K. Sen, Sequential Nonparametrics: Invariance Principles and Statistical Inference, Wiley, New York 1981. (1981) Zbl0583.62074MR0633884
  42. P. K. Sen, A renewal theorem for an urn model, Ann. Probab. 10 (1982), 838-843. (1982) Zbl0544.60042MR0659553
  43. P. K. Sen, On the asymptotic normality in sequential sampling tagging, Sankhya A 44 (1982), 352-363. (1982) MR0705459
  44. P. K. Sen, On permutational central limit theorems for general multivariate linear rank statistics, Sankhya A 45 (1983), 141-149. (1983) Zbl0541.62037MR0748453
  45. P. K. Sen, Asymptotics in finite population sampling, In: Handbook of Statistics, Vol. 6: Sampling (P. R. Krishnaiah and C. R. Rao, eds.), North Holland, Amsterdam 1988, pp. 291-331. (1988) MR1020087
  46. P. K. Sen, M. Ghosh, On bounded length sequential confidence intervals based on one-sample rank order statistics, Ann. Math. Statist. 42 (1971), 189-203. (1971) Zbl0223.62100MR0279939
  47. P. K. Sen, M. Ghosh, On strong convergence of regression rank statistics, Sankhya A 34 (1972), 335-348. (1972) Zbl0269.62046MR0341741
  48. R. J. Serfiing, Probability inequalities for the sum sampling without replacement, Ann. Statist. 2 (1974), 39-48. (1974) MR0420967
  49. J. A. Víšek, Asymptotic distribution of sample estimate for rejective, Sampford and successive sampling, In: Contributions to Statistics: Jaroslav Hájek Memorial Volume (J. Jurečková, ed.), Academia, Prague and Reidel, Dordrecht 1979, pp. 363-376. (1979) MR0561274
  50. A. Wald, J. Wolfowitz, Statistical tests based on permutations of the observations, Ann Math. Statist. 15 (1974), 358-372. (1974) MR0011424

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.