Nonlinear unilateral problems in Orlicz spaces
L. Aharouch; E. Azroul; M. Rhoudaf
Applicationes Mathematicae (2006)
- Volume: 33, Issue: 2, page 217-241
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topL. Aharouch, E. Azroul, and M. Rhoudaf. "Nonlinear unilateral problems in Orlicz spaces." Applicationes Mathematicae 33.2 (2006): 217-241. <http://eudml.org/doc/278956>.
@article{L2006,
abstract = {We prove the existence of solutions of the unilateral problem for equations of the type Au - divϕ(u) = μ in Orlicz spaces, where A is a Leray-Lions operator defined on $(A) ⊂ W₀¹L_M(Ω)$, $μ ∈ L¹(Ω) + W^\{-1\}E_\{M̅\}(Ω)$ and $ϕ ∈ C⁰(ℝ,ℝ^N)$.},
author = {L. Aharouch, E. Azroul, M. Rhoudaf},
journal = {Applicationes Mathematicae},
keywords = {Orlicz–Sobolev spaces; boundary value problems; truncations; unilateral problems},
language = {eng},
number = {2},
pages = {217-241},
title = {Nonlinear unilateral problems in Orlicz spaces},
url = {http://eudml.org/doc/278956},
volume = {33},
year = {2006},
}
TY - JOUR
AU - L. Aharouch
AU - E. Azroul
AU - M. Rhoudaf
TI - Nonlinear unilateral problems in Orlicz spaces
JO - Applicationes Mathematicae
PY - 2006
VL - 33
IS - 2
SP - 217
EP - 241
AB - We prove the existence of solutions of the unilateral problem for equations of the type Au - divϕ(u) = μ in Orlicz spaces, where A is a Leray-Lions operator defined on $(A) ⊂ W₀¹L_M(Ω)$, $μ ∈ L¹(Ω) + W^{-1}E_{M̅}(Ω)$ and $ϕ ∈ C⁰(ℝ,ℝ^N)$.
LA - eng
KW - Orlicz–Sobolev spaces; boundary value problems; truncations; unilateral problems
UR - http://eudml.org/doc/278956
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.