Finiteness results for Diophantine triples with repdigit values
Attila Bérczes; Florian Luca; István Pink; Volker Ziegler
Acta Arithmetica (2016)
- Volume: 172, Issue: 2, page 133-148
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topAttila Bérczes, et al. "Finiteness results for Diophantine triples with repdigit values." Acta Arithmetica 172.2 (2016): 133-148. <http://eudml.org/doc/279043>.
@article{AttilaBérczes2016,
abstract = {Let g ≥ 2 be an integer and $_g ⊂ ℕ$ be the set of repdigits in base g. Let $_g$ be the set of Diophantine triples with values in $_g$; that is, $_g$ is the set of all triples (a,b,c) ∈ ℕ³ with c < b < a such that ab + 1, ac + 1 and bc + 1 lie in the set $_g$. We prove effective finiteness results for the set $_g$.},
author = {Attila Bérczes, Florian Luca, István Pink, Volker Ziegler},
journal = {Acta Arithmetica},
keywords = {Diophantine sets; repdigit numbers},
language = {eng},
number = {2},
pages = {133-148},
title = {Finiteness results for Diophantine triples with repdigit values},
url = {http://eudml.org/doc/279043},
volume = {172},
year = {2016},
}
TY - JOUR
AU - Attila Bérczes
AU - Florian Luca
AU - István Pink
AU - Volker Ziegler
TI - Finiteness results for Diophantine triples with repdigit values
JO - Acta Arithmetica
PY - 2016
VL - 172
IS - 2
SP - 133
EP - 148
AB - Let g ≥ 2 be an integer and $_g ⊂ ℕ$ be the set of repdigits in base g. Let $_g$ be the set of Diophantine triples with values in $_g$; that is, $_g$ is the set of all triples (a,b,c) ∈ ℕ³ with c < b < a such that ab + 1, ac + 1 and bc + 1 lie in the set $_g$. We prove effective finiteness results for the set $_g$.
LA - eng
KW - Diophantine sets; repdigit numbers
UR - http://eudml.org/doc/279043
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.