Solutions to xyz = 1 and x + y + z = k in algebraic integers of small degree, II
H. G. Grundman; L. L. Hall-Seelig
Acta Arithmetica (2015)
- Volume: 171, Issue: 3, page 257-276
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topH. G. Grundman, and L. L. Hall-Seelig. "Solutions to xyz = 1 and x + y + z = k in algebraic integers of small degree, II." Acta Arithmetica 171.3 (2015): 257-276. <http://eudml.org/doc/279274>.
@article{H2015,
abstract = {Let k ∈ ℤ be such that $|_k(ℚ)|$ is finite, where $_k: y² = 1 - 2kx + k²x² - 4x³$. We complete the determination of all solutions to xyz = 1 and x + y + z = k in integers of number fields of degree at most four over ℚ.},
author = {H. G. Grundman, L. L. Hall-Seelig},
journal = {Acta Arithmetica},
keywords = {Diophantine equations; elliptic curves},
language = {eng},
number = {3},
pages = {257-276},
title = {Solutions to xyz = 1 and x + y + z = k in algebraic integers of small degree, II},
url = {http://eudml.org/doc/279274},
volume = {171},
year = {2015},
}
TY - JOUR
AU - H. G. Grundman
AU - L. L. Hall-Seelig
TI - Solutions to xyz = 1 and x + y + z = k in algebraic integers of small degree, II
JO - Acta Arithmetica
PY - 2015
VL - 171
IS - 3
SP - 257
EP - 276
AB - Let k ∈ ℤ be such that $|_k(ℚ)|$ is finite, where $_k: y² = 1 - 2kx + k²x² - 4x³$. We complete the determination of all solutions to xyz = 1 and x + y + z = k in integers of number fields of degree at most four over ℚ.
LA - eng
KW - Diophantine equations; elliptic curves
UR - http://eudml.org/doc/279274
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.