# The class number one problem for the real quadratic fields ℚ(√((an)²+4a))

András Biró; Kostadinka Lapkova

Acta Arithmetica (2016)

- Volume: 172, Issue: 2, page 117-131
- ISSN: 0065-1036

## Access Full Article

top## Abstract

top## How to cite

topAndrás Biró, and Kostadinka Lapkova. "The class number one problem for the real quadratic fields ℚ(√((an)²+4a))." Acta Arithmetica 172.2 (2016): 117-131. <http://eudml.org/doc/279595>.

@article{AndrásBiró2016,

abstract = {We solve unconditionally the class number one problem for the 2-parameter family of real quadratic fields ℚ(√d) with square-free discriminant d = (an)²+4a for positive odd integers a and n.},

author = {András Biró, Kostadinka Lapkova},

journal = {Acta Arithmetica},

keywords = {class number problem; real quadratic field},

language = {eng},

number = {2},

pages = {117-131},

title = {The class number one problem for the real quadratic fields ℚ(√((an)²+4a))},

url = {http://eudml.org/doc/279595},

volume = {172},

year = {2016},

}

TY - JOUR

AU - András Biró

AU - Kostadinka Lapkova

TI - The class number one problem for the real quadratic fields ℚ(√((an)²+4a))

JO - Acta Arithmetica

PY - 2016

VL - 172

IS - 2

SP - 117

EP - 131

AB - We solve unconditionally the class number one problem for the 2-parameter family of real quadratic fields ℚ(√d) with square-free discriminant d = (an)²+4a for positive odd integers a and n.

LA - eng

KW - class number problem; real quadratic field

UR - http://eudml.org/doc/279595

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.