The class number one problem for the real quadratic fields ℚ(√((an)²+4a))
András Biró; Kostadinka Lapkova
Acta Arithmetica (2016)
- Volume: 172, Issue: 2, page 117-131
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topAndrás Biró, and Kostadinka Lapkova. "The class number one problem for the real quadratic fields ℚ(√((an)²+4a))." Acta Arithmetica 172.2 (2016): 117-131. <http://eudml.org/doc/279595>.
@article{AndrásBiró2016,
abstract = {We solve unconditionally the class number one problem for the 2-parameter family of real quadratic fields ℚ(√d) with square-free discriminant d = (an)²+4a for positive odd integers a and n.},
author = {András Biró, Kostadinka Lapkova},
journal = {Acta Arithmetica},
keywords = {class number problem; real quadratic field},
language = {eng},
number = {2},
pages = {117-131},
title = {The class number one problem for the real quadratic fields ℚ(√((an)²+4a))},
url = {http://eudml.org/doc/279595},
volume = {172},
year = {2016},
}
TY - JOUR
AU - András Biró
AU - Kostadinka Lapkova
TI - The class number one problem for the real quadratic fields ℚ(√((an)²+4a))
JO - Acta Arithmetica
PY - 2016
VL - 172
IS - 2
SP - 117
EP - 131
AB - We solve unconditionally the class number one problem for the 2-parameter family of real quadratic fields ℚ(√d) with square-free discriminant d = (an)²+4a for positive odd integers a and n.
LA - eng
KW - class number problem; real quadratic field
UR - http://eudml.org/doc/279595
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.