On asymptotic behaviour of empirical processes

Petr Lachout

Kybernetika (1992)

  • Volume: 28, Issue: 4, page 292-308
  • ISSN: 0023-5954

How to cite

top

Lachout, Petr. "On asymptotic behaviour of empirical processes." Kybernetika 28.4 (1992): 292-308. <http://eudml.org/doc/27966>.

@article{Lachout1992,
author = {Lachout, Petr},
journal = {Kybernetika},
keywords = {empirical processes; properties of empirical distribution functions; empirical distributions},
language = {eng},
number = {4},
pages = {292-308},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On asymptotic behaviour of empirical processes},
url = {http://eudml.org/doc/27966},
volume = {28},
year = {1992},
}

TY - JOUR
AU - Lachout, Petr
TI - On asymptotic behaviour of empirical processes
JO - Kybernetika
PY - 1992
PB - Institute of Information Theory and Automation AS CR
VL - 28
IS - 4
SP - 292
EP - 308
LA - eng
KW - empirical processes; properties of empirical distribution functions; empirical distributions
UR - http://eudml.org/doc/27966
ER -

References

top
  1. P.J. Bickel, M.J. Wichura, Convergence criteria for multiparameter stochastic processes and some application, Ann. Math. Statist. 42 (1971), 1656-1670. (1971) MR0383482
  2. P. Lachout, A martingale central limit theorem, Comment. Math. Univ. Carolinae 27 (1986), 2, 371-375. (1986) Zbl0633.60038MR0857555
  3. P. Lachout, Billingsley-type tightness criteria for multiparameter stochastic processes, Kybernetika H (1988), 5, 363-371. (1988) Zbl0665.60009MR0970213
  4. D. L. McLeish, Dependent central limit theorem and in variance principles, Ann. Probab. 2 (1974), 2, 620-628. (1974) MR0358933
  5. S. M. Miller, Empirical processes based upon residuals from errorsin-variables regression, Ann. Statist. 17 (1989), 282-292. (1989) MR0981450
  6. G. Neuhaus, On weak convergence of stochastic processes with multidimensional time parameter, Ann. Math. Statist. 42 (1971), 1285-1295. (1971) Zbl0222.60013MR0293706
  7. S. Portnoy, Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles, In: Robust and Nonlinear Time-Series Analysis (J. Franke, W. Händle and D. Martin, eds.), Springer- Verlag, New York - Berlin - Heidelberg 1983, pp. 231-246. (1983) MR0786311
  8. M. L. Straf, A General Skorohod Space and Its Applications to the Weak Convergence of Stochastic Processes with Several Parameters, Ph.D. Dissertation, Univ. of Chicago 1969. (1969) 
  9. J. Štěpán, Probability Theory (in Czech), Academia, Prague 1987. (1987) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.