On asymptotic behaviour of empirical processes
Kybernetika (1992)
- Volume: 28, Issue: 4, page 292-308
- ISSN: 0023-5954
Access Full Article
topHow to cite
topLachout, Petr. "On asymptotic behaviour of empirical processes." Kybernetika 28.4 (1992): 292-308. <http://eudml.org/doc/27966>.
@article{Lachout1992,
author = {Lachout, Petr},
journal = {Kybernetika},
keywords = {empirical processes; properties of empirical distribution functions; empirical distributions},
language = {eng},
number = {4},
pages = {292-308},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On asymptotic behaviour of empirical processes},
url = {http://eudml.org/doc/27966},
volume = {28},
year = {1992},
}
TY - JOUR
AU - Lachout, Petr
TI - On asymptotic behaviour of empirical processes
JO - Kybernetika
PY - 1992
PB - Institute of Information Theory and Automation AS CR
VL - 28
IS - 4
SP - 292
EP - 308
LA - eng
KW - empirical processes; properties of empirical distribution functions; empirical distributions
UR - http://eudml.org/doc/27966
ER -
References
top- P.J. Bickel, M.J. Wichura, Convergence criteria for multiparameter stochastic processes and some application, Ann. Math. Statist. 42 (1971), 1656-1670. (1971) MR0383482
- P. Lachout, A martingale central limit theorem, Comment. Math. Univ. Carolinae 27 (1986), 2, 371-375. (1986) Zbl0633.60038MR0857555
- P. Lachout, Billingsley-type tightness criteria for multiparameter stochastic processes, Kybernetika H (1988), 5, 363-371. (1988) Zbl0665.60009MR0970213
- D. L. McLeish, Dependent central limit theorem and in variance principles, Ann. Probab. 2 (1974), 2, 620-628. (1974) MR0358933
- S. M. Miller, Empirical processes based upon residuals from errorsin-variables regression, Ann. Statist. 17 (1989), 282-292. (1989) MR0981450
- G. Neuhaus, On weak convergence of stochastic processes with multidimensional time parameter, Ann. Math. Statist. 42 (1971), 1285-1295. (1971) Zbl0222.60013MR0293706
- S. Portnoy, Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles, In: Robust and Nonlinear Time-Series Analysis (J. Franke, W. Händle and D. Martin, eds.), Springer- Verlag, New York - Berlin - Heidelberg 1983, pp. 231-246. (1983) MR0786311
- M. L. Straf, A General Skorohod Space and Its Applications to the Weak Convergence of Stochastic Processes with Several Parameters, Ph.D. Dissertation, Univ. of Chicago 1969. (1969)
- J. Štěpán, Probability Theory (in Czech), Academia, Prague 1987. (1987)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.