Median for metric spaces
Nacereddine Belili; Henri Heinich
Applicationes Mathematicae (2001)
- Volume: 28, Issue: 2, page 191-209
 - ISSN: 1233-7234
 
Access Full Article
topAbstract
topHow to cite
topNacereddine Belili, and Henri Heinich. "Median for metric spaces." Applicationes Mathematicae 28.2 (2001): 191-209. <http://eudml.org/doc/279825>.
@article{NacereddineBelili2001,
	abstract = {We consider a Köthe space $(,||·||_)$ of random variables (r.v.) defined on the Lebesgue space ([0,1],B,λ). We show that for any sub-σ-algebra ℱ of B and for all r.v.’s X with values in a separable finitely compact metric space (M,d) such that d(X,x) ∈ for all x ∈ M (we then write X ∈ (M)), there exists a median of X given ℱ, i.e., an ℱ-measurable r.v. Y ∈ (M) such that $||d(X,Y)||_ ≤ ||d(X,Z)||_$ for all ℱ-measurable Z. We develop the basic theory of these medians, we show the convergence of empirical medians and we give some applications.},
	author = {Nacereddine Belili, Henri Heinich},
	journal = {Applicationes Mathematicae},
	keywords = {median; metric spaces; conditional median; convergence of medians; Doss expectations; Köthe spaces},
	language = {eng},
	number = {2},
	pages = {191-209},
	title = {Median for metric spaces},
	url = {http://eudml.org/doc/279825},
	volume = {28},
	year = {2001},
}
TY  - JOUR
AU  - Nacereddine Belili
AU  - Henri Heinich
TI  - Median for metric spaces
JO  - Applicationes Mathematicae
PY  - 2001
VL  - 28
IS  - 2
SP  - 191
EP  - 209
AB  - We consider a Köthe space $(,||·||_)$ of random variables (r.v.) defined on the Lebesgue space ([0,1],B,λ). We show that for any sub-σ-algebra ℱ of B and for all r.v.’s X with values in a separable finitely compact metric space (M,d) such that d(X,x) ∈ for all x ∈ M (we then write X ∈ (M)), there exists a median of X given ℱ, i.e., an ℱ-measurable r.v. Y ∈ (M) such that $||d(X,Y)||_ ≤ ||d(X,Z)||_$ for all ℱ-measurable Z. We develop the basic theory of these medians, we show the convergence of empirical medians and we give some applications.
LA  - eng
KW  - median; metric spaces; conditional median; convergence of medians; Doss expectations; Köthe spaces
UR  - http://eudml.org/doc/279825
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.