Remarks on D -integral complete multipartite graphs

Pavel Híc; Milan Pokorný

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 457-464
  • ISSN: 0011-4642

Abstract

top
A graph is called distance integral (or D -integral) if all eigenvalues of its distance matrix are integers. In their study of D -integral complete multipartite graphs, Yang and Wang (2015) posed two questions on the existence of such graphs. We resolve these questions and present some further results on D -integral complete multipartite graphs. We give the first known distance integral complete multipartite graphs K p 1 , p 2 , p 3 with p 1 < p 2 < p 3 , and K p 1 , p 2 , p 3 , p 4 with p 1 < p 2 < p 3 < p 4 , as well as the infinite classes of distance integral complete multipartite graphs K a 1 p 1 , a 2 p 2 , ... , a s p s with s = 5 , 6 .

How to cite

top

Híc, Pavel, and Pokorný, Milan. "Remarks on $D$-integral complete multipartite graphs." Czechoslovak Mathematical Journal 66.2 (2016): 457-464. <http://eudml.org/doc/280088>.

@article{Híc2016,
abstract = {A graph is called distance integral (or $D$-integral) if all eigenvalues of its distance matrix are integers. In their study of $D$-integral complete multipartite graphs, Yang and Wang (2015) posed two questions on the existence of such graphs. We resolve these questions and present some further results on $D$-integral complete multipartite graphs. We give the first known distance integral complete multipartite graphs $K_\{p_\{1\},p_\{2\},p_\{3\}\}$ with $p_\{1\}<p_\{2\}<p_\{3\}$, and $K_\{p_\{1\},p_\{2\},p_\{3\},p_\{4\}\}$ with $p_\{1\}<p_\{2\}<p_\{3\}<p_\{4\}$, as well as the infinite classes of distance integral complete multipartite graphs $K_\{a_\{1\} p_\{1\},a_\{2\} p_\{2\},\ldots ,a_\{s\} p_\{s\}\}$ with $s=5,6$.},
author = {Híc, Pavel, Pokorný, Milan},
journal = {Czechoslovak Mathematical Journal},
keywords = {distance spectrum; integral graph; distance integral graph; complete multipartite graph},
language = {eng},
number = {2},
pages = {457-464},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on $D$-integral complete multipartite graphs},
url = {http://eudml.org/doc/280088},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Híc, Pavel
AU - Pokorný, Milan
TI - Remarks on $D$-integral complete multipartite graphs
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 457
EP - 464
AB - A graph is called distance integral (or $D$-integral) if all eigenvalues of its distance matrix are integers. In their study of $D$-integral complete multipartite graphs, Yang and Wang (2015) posed two questions on the existence of such graphs. We resolve these questions and present some further results on $D$-integral complete multipartite graphs. We give the first known distance integral complete multipartite graphs $K_{p_{1},p_{2},p_{3}}$ with $p_{1}<p_{2}<p_{3}$, and $K_{p_{1},p_{2},p_{3},p_{4}}$ with $p_{1}<p_{2}<p_{3}<p_{4}$, as well as the infinite classes of distance integral complete multipartite graphs $K_{a_{1} p_{1},a_{2} p_{2},\ldots ,a_{s} p_{s}}$ with $s=5,6$.
LA - eng
KW - distance spectrum; integral graph; distance integral graph; complete multipartite graph
UR - http://eudml.org/doc/280088
ER -

References

top
  1. Andreescu, T., Andrica, D., Cucurezeanu, I., An Introduction to Diophantine Equations. A Problem-Based Approach, Birkhäuser New York (2010). (2010) Zbl1226.11001MR2723590
  2. Aouchiche, M., Hansen, P., Distance spectra of graphs: a survey, Linear Algebra Appl. 458 (2014), 301-386. (2014) Zbl1295.05093MR3231823
  3. Balińska, K., Cvetković, D., Radosavljević, Z., Simić, S., Stevanović, D., A survey on integral graphs, Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 13 (2002), 42-65. (2002) Zbl1051.05057MR1992839
  4. Clark, J., Kettle, S. F. A., 10.1016/S0020-1693(00)85743-6, Inorg. Chim. Acta 14 (1975), 201-205. (1975) DOI10.1016/S0020-1693(00)85743-6
  5. Du, Z., Ilić, A., Feng, L., 10.1080/03081087.2012.750654, Linear Multilinear Algebra 61 (2013), 1287-1301. (2013) Zbl1272.05110MR3175365DOI10.1080/03081087.2012.750654
  6. Güngör, A. D., Bozkurt, Ş. B., 10.1080/03081080903503678, Linear Multilinear Algebra 59 (2011), 365-370. (2011) Zbl1223.05174MR2802519DOI10.1080/03081080903503678
  7. Harary, F., Schwenk, A. J., 10.1007/BFb0066434, Graphs Combinatorics, Proc. Capital Conf., Washington, 1973, Lect. Notes Math. 406 Springer, Berlin (1974), 45-51. (1974) MR0387124DOI10.1007/BFb0066434
  8. Ilić, A., Distance spectra and distance energy of integral circulant graphs, Linear Algebra Appl. 433 (2010), 1005-1014. (2010) Zbl1215.05105MR2658651
  9. Indulal, G., Gutman, I., Vijayakumar, A., On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), 461-472. (2008) Zbl1199.05226MR2457864
  10. Pokorný, M., Híc, P., Stevanović, D., Milošević, M., 10.1016/j.disc.2015.03.004, Discrete Math. 338 (2015), 1784-1792. (2015) Zbl1315.05045MR3351701DOI10.1016/j.disc.2015.03.004
  11. Renteln, P., 10.1016/j.disc.2011.01.021, Discrete Math. 311 (2011), 738-755. (2011) Zbl1233.05132MR2774230DOI10.1016/j.disc.2011.01.021
  12. Stevanović, D., Indulal, G., 10.1016/j.aml.2008.11.007, Appl. Math. Lett. 22 (2009), 1136-1140. (2009) Zbl1179.05040MR2523015DOI10.1016/j.aml.2008.11.007
  13. Stevanović, D., Milošević, M., Híc, P., Pokorný, M., Proof of a conjecture on distance energy of complete multipartite graphs, MATCH Commun. Math. Comput. Chem. 70 (2013), 157-162. (2013) Zbl1299.05233MR3136757
  14. Yang, R., Wang, L., Distance integral complete multipartite graphs with s = 5 , 6 , (2015), 6 pages Preprint arXiv:1511.04983v1 [math.CO]. (2015) MR3359263
  15. Yang, R., Wang, L., 10.2298/FIL1504739Y, Filomat 29 (2015), 739-749. (2015) MR3359263DOI10.2298/FIL1504739Y
  16. Zhou, B., Ilić, A., On distance spectral radius and distance energy of graphs, MATCH Commun. Math. Comput. Chem. 64 (2010), 261-280. (2010) Zbl1265.05437MR2677587

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.