Remarks on -integral complete multipartite graphs
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 457-464
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHíc, Pavel, and Pokorný, Milan. "Remarks on $D$-integral complete multipartite graphs." Czechoslovak Mathematical Journal 66.2 (2016): 457-464. <http://eudml.org/doc/280088>.
@article{Híc2016,
abstract = {A graph is called distance integral (or $D$-integral) if all eigenvalues of its distance matrix are integers. In their study of $D$-integral complete multipartite graphs, Yang and Wang (2015) posed two questions on the existence of such graphs. We resolve these questions and present some further results on $D$-integral complete multipartite graphs. We give the first known distance integral complete multipartite graphs $K_\{p_\{1\},p_\{2\},p_\{3\}\}$ with $p_\{1\}<p_\{2\}<p_\{3\}$, and $K_\{p_\{1\},p_\{2\},p_\{3\},p_\{4\}\}$ with $p_\{1\}<p_\{2\}<p_\{3\}<p_\{4\}$, as well as the infinite classes of distance integral complete multipartite graphs $K_\{a_\{1\} p_\{1\},a_\{2\} p_\{2\},\ldots ,a_\{s\} p_\{s\}\}$ with $s=5,6$.},
author = {Híc, Pavel, Pokorný, Milan},
journal = {Czechoslovak Mathematical Journal},
keywords = {distance spectrum; integral graph; distance integral graph; complete multipartite graph},
language = {eng},
number = {2},
pages = {457-464},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on $D$-integral complete multipartite graphs},
url = {http://eudml.org/doc/280088},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Híc, Pavel
AU - Pokorný, Milan
TI - Remarks on $D$-integral complete multipartite graphs
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 457
EP - 464
AB - A graph is called distance integral (or $D$-integral) if all eigenvalues of its distance matrix are integers. In their study of $D$-integral complete multipartite graphs, Yang and Wang (2015) posed two questions on the existence of such graphs. We resolve these questions and present some further results on $D$-integral complete multipartite graphs. We give the first known distance integral complete multipartite graphs $K_{p_{1},p_{2},p_{3}}$ with $p_{1}<p_{2}<p_{3}$, and $K_{p_{1},p_{2},p_{3},p_{4}}$ with $p_{1}<p_{2}<p_{3}<p_{4}$, as well as the infinite classes of distance integral complete multipartite graphs $K_{a_{1} p_{1},a_{2} p_{2},\ldots ,a_{s} p_{s}}$ with $s=5,6$.
LA - eng
KW - distance spectrum; integral graph; distance integral graph; complete multipartite graph
UR - http://eudml.org/doc/280088
ER -
References
top- Andreescu, T., Andrica, D., Cucurezeanu, I., An Introduction to Diophantine Equations. A Problem-Based Approach, Birkhäuser New York (2010). (2010) Zbl1226.11001MR2723590
- Aouchiche, M., Hansen, P., Distance spectra of graphs: a survey, Linear Algebra Appl. 458 (2014), 301-386. (2014) Zbl1295.05093MR3231823
- Balińska, K., Cvetković, D., Radosavljević, Z., Simić, S., Stevanović, D., A survey on integral graphs, Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 13 (2002), 42-65. (2002) Zbl1051.05057MR1992839
- Clark, J., Kettle, S. F. A., 10.1016/S0020-1693(00)85743-6, Inorg. Chim. Acta 14 (1975), 201-205. (1975) DOI10.1016/S0020-1693(00)85743-6
- Du, Z., Ilić, A., Feng, L., 10.1080/03081087.2012.750654, Linear Multilinear Algebra 61 (2013), 1287-1301. (2013) Zbl1272.05110MR3175365DOI10.1080/03081087.2012.750654
- Güngör, A. D., Bozkurt, Ş. B., 10.1080/03081080903503678, Linear Multilinear Algebra 59 (2011), 365-370. (2011) Zbl1223.05174MR2802519DOI10.1080/03081080903503678
- Harary, F., Schwenk, A. J., 10.1007/BFb0066434, Graphs Combinatorics, Proc. Capital Conf., Washington, 1973, Lect. Notes Math. 406 Springer, Berlin (1974), 45-51. (1974) MR0387124DOI10.1007/BFb0066434
- Ilić, A., Distance spectra and distance energy of integral circulant graphs, Linear Algebra Appl. 433 (2010), 1005-1014. (2010) Zbl1215.05105MR2658651
- Indulal, G., Gutman, I., Vijayakumar, A., On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), 461-472. (2008) Zbl1199.05226MR2457864
- Pokorný, M., Híc, P., Stevanović, D., Milošević, M., 10.1016/j.disc.2015.03.004, Discrete Math. 338 (2015), 1784-1792. (2015) Zbl1315.05045MR3351701DOI10.1016/j.disc.2015.03.004
- Renteln, P., 10.1016/j.disc.2011.01.021, Discrete Math. 311 (2011), 738-755. (2011) Zbl1233.05132MR2774230DOI10.1016/j.disc.2011.01.021
- Stevanović, D., Indulal, G., 10.1016/j.aml.2008.11.007, Appl. Math. Lett. 22 (2009), 1136-1140. (2009) Zbl1179.05040MR2523015DOI10.1016/j.aml.2008.11.007
- Stevanović, D., Milošević, M., Híc, P., Pokorný, M., Proof of a conjecture on distance energy of complete multipartite graphs, MATCH Commun. Math. Comput. Chem. 70 (2013), 157-162. (2013) Zbl1299.05233MR3136757
- Yang, R., Wang, L., Distance integral complete multipartite graphs with , (2015), 6 pages Preprint arXiv:1511.04983v1 [math.CO]. (2015) MR3359263
- Yang, R., Wang, L., 10.2298/FIL1504739Y, Filomat 29 (2015), 739-749. (2015) MR3359263DOI10.2298/FIL1504739Y
- Zhou, B., Ilić, A., On distance spectral radius and distance energy of graphs, MATCH Commun. Math. Comput. Chem. 64 (2010), 261-280. (2010) Zbl1265.05437MR2677587
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.