Quadratic differentials and algebraic Cauchy transform
Mohamed Jalel Atia; Faouzi Thabet
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 351-363
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAtia, Mohamed Jalel, and Thabet, Faouzi. "Quadratic differentials $(A(z-a)(z-b)/(z-c)^{2}) {\rm d} z^{2}$ and algebraic Cauchy transform." Czechoslovak Mathematical Journal 66.2 (2016): 351-363. <http://eudml.org/doc/280094>.
@article{Atia2016,
abstract = {We discuss the representability almost everywhere (a.e.) in $\mathbb \{C\}$ of an irreducible algebraic function as the Cauchy transform of a signed measure supported on a finite number of compact semi-analytic curves and a finite number of isolated points. This brings us to the study of trajectories of the particular family of quadratic differentials $A(z-a)(z-b)\*(z-c)^\{-2\} \{\rm d\} z^\{2\}$. More precisely, we give a necessary and sufficient condition on the complex numbers $a$ and $b$ for these quadratic differentials to have finite critical trajectories. We also discuss all possible configurations of critical graphs.},
author = {Atia, Mohamed Jalel, Thabet, Faouzi},
journal = {Czechoslovak Mathematical Journal},
keywords = {algebraic equation; Cauchy transform; quadratic differential},
language = {eng},
number = {2},
pages = {351-363},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Quadratic differentials $(A(z-a)(z-b)/(z-c)^\{2\}) \{\rm d\} z^\{2\}$ and algebraic Cauchy transform},
url = {http://eudml.org/doc/280094},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Atia, Mohamed Jalel
AU - Thabet, Faouzi
TI - Quadratic differentials $(A(z-a)(z-b)/(z-c)^{2}) {\rm d} z^{2}$ and algebraic Cauchy transform
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 351
EP - 363
AB - We discuss the representability almost everywhere (a.e.) in $\mathbb {C}$ of an irreducible algebraic function as the Cauchy transform of a signed measure supported on a finite number of compact semi-analytic curves and a finite number of isolated points. This brings us to the study of trajectories of the particular family of quadratic differentials $A(z-a)(z-b)\*(z-c)^{-2} {\rm d} z^{2}$. More precisely, we give a necessary and sufficient condition on the complex numbers $a$ and $b$ for these quadratic differentials to have finite critical trajectories. We also discuss all possible configurations of critical graphs.
LA - eng
KW - algebraic equation; Cauchy transform; quadratic differential
UR - http://eudml.org/doc/280094
ER -
References
top- Atia, M. J., Martínez-Finkelshtein, A., Martínez-González, P., Thabet, F., 10.1016/j.jmaa.2014.02.040, J. Math. Anal. Appl. 416 (2014), 52-80. (2014) Zbl1295.30015MR3182748DOI10.1016/j.jmaa.2014.02.040
- Jenkins, J. A., Univalent Functions and Conformal Mapping, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie Springer, Berlin (1958). (1958) Zbl0083.29606MR0096806
- Kuijlaars, A. B. J., McLaughlin, K. T.-R., 10.1007/s00365-003-0536-3, Constructive Approximation 20 (2004), 497-523. (2004) Zbl1069.33008MR2078083DOI10.1007/s00365-003-0536-3
- Martínez-Finkelshtein, A., Martínez-González, P., Orive, R., 10.1016/S0377-0427(00)00654-3, J. Comput. Appl. Math. 133 (2001), 477-487 Conf. Proc. (Patras, 1999), Elsevier (North-Holland), Amsterdam. (2001) Zbl0990.33009MR1858305DOI10.1016/S0377-0427(00)00654-3
- Pommerenke, C., Univalent Functions. With a Chapter on Quadratic Differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher. Band 25. Vandenhoeck & Ruprecht, Göttingen (1975). (1975) Zbl0298.30014MR0507768
- Pritsker, I. E., 10.1007/BF03321707, Comput. Methods Funct. Theory 8 597-614 (2008). (2008) Zbl1160.31004MR2419497DOI10.1007/BF03321707
- Strebel, K., Quadratic Differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Vol. 5 Springer, Berlin (1984). (1984) Zbl0547.30038MR0743423
- Vasil'ev, A., 10.1007/b83857, Lecture Notes in Mathematics 1788 Springer, Berlin (2002). (2002) Zbl0999.30001MR1929066DOI10.1007/b83857
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.