Linear natural operators lifting -vectors to tensors of type on Weil bundles
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 511-525
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDębecki, Jacek. "Linear natural operators lifting $p$-vectors to tensors of type $(q,0)$ on Weil bundles." Czechoslovak Mathematical Journal 66.2 (2016): 511-525. <http://eudml.org/doc/280099>.
@article{Dębecki2016,
abstract = {We give a classification of all linear natural operators transforming $p$-vectors (i.e., skew-symmetric tensor fields of type $(p,0)$) on $n$-dimensional manifolds $M$ to tensor fields of type $(q,0)$ on $T^AM$, where $T^A$ is a Weil bundle, under the condition that $p\ge 1$, $n\ge p$ and $n\ge q$. The main result of the paper states that, roughly speaking, each linear natural operator lifting $p$-vectors to tensor fields of type $(q,0)$ on $T^A$ is a sum of operators obtained by permuting the indices of the tensor products of linear natural operators lifting $p$-vectors to tensor fields of type $(p,0)$ on $T^A$ and canonical tensor fields of type $(q-p,0)$ on $T^A$.},
author = {Dębecki, Jacek},
journal = {Czechoslovak Mathematical Journal},
keywords = {natural operator; Weil bundle},
language = {eng},
number = {2},
pages = {511-525},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Linear natural operators lifting $p$-vectors to tensors of type $(q,0)$ on Weil bundles},
url = {http://eudml.org/doc/280099},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Dębecki, Jacek
TI - Linear natural operators lifting $p$-vectors to tensors of type $(q,0)$ on Weil bundles
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 511
EP - 525
AB - We give a classification of all linear natural operators transforming $p$-vectors (i.e., skew-symmetric tensor fields of type $(p,0)$) on $n$-dimensional manifolds $M$ to tensor fields of type $(q,0)$ on $T^AM$, where $T^A$ is a Weil bundle, under the condition that $p\ge 1$, $n\ge p$ and $n\ge q$. The main result of the paper states that, roughly speaking, each linear natural operator lifting $p$-vectors to tensor fields of type $(q,0)$ on $T^A$ is a sum of operators obtained by permuting the indices of the tensor products of linear natural operators lifting $p$-vectors to tensor fields of type $(p,0)$ on $T^A$ and canonical tensor fields of type $(q-p,0)$ on $T^A$.
LA - eng
KW - natural operator; Weil bundle
UR - http://eudml.org/doc/280099
ER -
References
top- Dębecki, J., 10.4064/ap88-3-6, Ann. Pol. Math. 88 (2006), 271-278. (2006) Zbl1114.58004MR2260406DOI10.4064/ap88-3-6
- Dębecki, J., 10.1007/s10587-005-0067-0, Czech. Math. J. 55 (2005), 809-816. (2005) Zbl1081.53015MR2153104DOI10.1007/s10587-005-0067-0
- Eck, D. J., 10.1016/0022-4049(86)90076-9, J. Pure Appl. Algebra 42 (1986), 133-140. (1986) Zbl0615.57019MR0857563DOI10.1016/0022-4049(86)90076-9
- Grabowski, J., Urba{ń}ski, P., 10.1088/0305-4470/28/23/024, J. Phys. A, Math. Gen. 28 (1995), 6743-6777. (1995) Zbl0872.58028MR1381143DOI10.1088/0305-4470/28/23/024
- Kainz, G., Michor, P. W., Natural transformations in differential geometry, Czech. Math. J. 37 (1987), 584-607. (1987) Zbl0654.58001MR0913992
- Kol{á}{ř}, I., Weil Bundles as Generalized Jet Spaces, Handbook of Global Analysis Elsevier, Amsterdam (2008), 625-664 D. Krupka et al. (2008) Zbl1236.58010MR2389643
- Kol{á}{ř}, I., 10.1007/BF00133034, Ann. Global Anal. Geom. 6 (1988), 109-117. (1988) Zbl0678.58003MR0982760DOI10.1007/BF00133034
- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, (corrected electronic version) Springer, Berlin (1993). (1993) MR1202431
- Luciano, O. O., 10.1017/S0027763000002774, Nagoya Math. J. 109 (1988), 69-89. (1988) Zbl0661.58007MR0931952DOI10.1017/S0027763000002774
- Mikulski, W. M., The linear natural operators lifting 2-vector fields to some Weil bundles, Note Mat. 19 (1999), 213-217. (1999) Zbl1008.58004MR1816875
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.