On the -polygonal numbers and the mean value of Dedekind sums
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 409-415
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGuo, Jing, and Li, Xiaoxue. "On the $k$-polygonal numbers and the mean value of Dedekind sums." Czechoslovak Mathematical Journal 66.2 (2016): 409-415. <http://eudml.org/doc/280101>.
@article{Guo2016,
abstract = {For any positive integer $k\ge 3$, it is easy to prove that the $k$-polygonal numbers are $a_n(k)= (2n+n(n-1)(k-2))/2$. The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet $L$-functions and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums $S(a_n(k)\overline\{a\}_m(k), p)$ for $k$-polygonal numbers with $1\le m,n\le p-1$, and give an interesting computational formula for it.},
author = {Guo, Jing, Li, Xiaoxue},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dedekind sums; mean value; computational problem; $k$-polygonal number; analytic method},
language = {eng},
number = {2},
pages = {409-415},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the $k$-polygonal numbers and the mean value of Dedekind sums},
url = {http://eudml.org/doc/280101},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Guo, Jing
AU - Li, Xiaoxue
TI - On the $k$-polygonal numbers and the mean value of Dedekind sums
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 409
EP - 415
AB - For any positive integer $k\ge 3$, it is easy to prove that the $k$-polygonal numbers are $a_n(k)= (2n+n(n-1)(k-2))/2$. The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet $L$-functions and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums $S(a_n(k)\overline{a}_m(k), p)$ for $k$-polygonal numbers with $1\le m,n\le p-1$, and give an interesting computational formula for it.
LA - eng
KW - Dedekind sums; mean value; computational problem; $k$-polygonal number; analytic method
UR - http://eudml.org/doc/280101
ER -
References
top- Apostol, T. M., Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics Springer, New York (1976). (1976) Zbl0335.10001MR0434929
- Apostol, T. M., 10.1007/978-1-4684-9910-0, Graduate Texts in Mathematics 41 Springer, New York (1976). (1976) Zbl0332.10017MR1027834DOI10.1007/978-1-4684-9910-0
- Carlitz, L., 10.2140/pjm.1953.3.523, Pac. J. Math. 3 (1953), 523-527. (1953) Zbl0057.03703MR0056020DOI10.2140/pjm.1953.3.523
- Conrey, J. B., Fransen, E., Klein, R., Scott, C., 10.1006/jnth.1996.0014, J. Number Theory 56 (1996), Article No. 0014, 214-226. (1996) Zbl0851.11028MR1373548DOI10.1006/jnth.1996.0014
- Jia, C., 10.1006/jnth.2000.2580, J. Number Theory 87 (2001), 173-188. (2001) Zbl0976.11044MR1824141DOI10.1006/jnth.2000.2580
- Mordell, L. J., 10.2307/2372310, Am. J. Math. 73 (1951), 593-598. (1951) Zbl0042.27401MR0042449DOI10.2307/2372310
- Rademacher, H., On the transformation of , J. Indian Math. Soc., New Ser. 19 (1955), 25-30. (1955) Zbl0064.32703MR0070660
- Rademacher, H., Grosswald, E., Dedekind Sums, The Carus Mathematical Monographs 16 The Mathematical Association of America, Washington (1972). (1972) Zbl0251.10020MR0357299
- Zhang, W., 10.1023/A:1006724724840, Acta Math. Hung. 86 (2000), 275-289. (2000) Zbl0963.11049MR1756252DOI10.1023/A:1006724724840
- Zhang, W., 10.5802/jtnb.179, J. Théor. Nombres Bordx. 8 (1996), 429-442. (1996) Zbl0871.11033MR1438480DOI10.5802/jtnb.179
- Zhang, W., Liu, Y., 10.1007/s11425-010-3153-1, Sci. China, Math. 53 (2010), 2543-2550. (2010) Zbl1221.11171MR2718846DOI10.1007/s11425-010-3153-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.