On the k -polygonal numbers and the mean value of Dedekind sums

Jing Guo; Xiaoxue Li

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 409-415
  • ISSN: 0011-4642

Abstract

top
For any positive integer k 3 , it is easy to prove that the k -polygonal numbers are a n ( k ) = ( 2 n + n ( n - 1 ) ( k - 2 ) ) / 2 . The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet L -functions and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums S ( a n ( k ) a ¯ m ( k ) , p ) for k -polygonal numbers with 1 m , n p - 1 , and give an interesting computational formula for it.

How to cite

top

Guo, Jing, and Li, Xiaoxue. "On the $k$-polygonal numbers and the mean value of Dedekind sums." Czechoslovak Mathematical Journal 66.2 (2016): 409-415. <http://eudml.org/doc/280101>.

@article{Guo2016,
abstract = {For any positive integer $k\ge 3$, it is easy to prove that the $k$-polygonal numbers are $a_n(k)= (2n+n(n-1)(k-2))/2$. The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet $L$-functions and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums $S(a_n(k)\overline\{a\}_m(k), p)$ for $k$-polygonal numbers with $1\le m,n\le p-1$, and give an interesting computational formula for it.},
author = {Guo, Jing, Li, Xiaoxue},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dedekind sums; mean value; computational problem; $k$-polygonal number; analytic method},
language = {eng},
number = {2},
pages = {409-415},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the $k$-polygonal numbers and the mean value of Dedekind sums},
url = {http://eudml.org/doc/280101},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Guo, Jing
AU - Li, Xiaoxue
TI - On the $k$-polygonal numbers and the mean value of Dedekind sums
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 409
EP - 415
AB - For any positive integer $k\ge 3$, it is easy to prove that the $k$-polygonal numbers are $a_n(k)= (2n+n(n-1)(k-2))/2$. The main purpose of this paper is, using the properties of Gauss sums and Dedekind sums, the mean square value theorem of Dirichlet $L$-functions and the analytic methods, to study the computational problem of one kind mean value of Dedekind sums $S(a_n(k)\overline{a}_m(k), p)$ for $k$-polygonal numbers with $1\le m,n\le p-1$, and give an interesting computational formula for it.
LA - eng
KW - Dedekind sums; mean value; computational problem; $k$-polygonal number; analytic method
UR - http://eudml.org/doc/280101
ER -

References

top
  1. Apostol, T. M., Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics Springer, New York (1976). (1976) Zbl0335.10001MR0434929
  2. Apostol, T. M., 10.1007/978-1-4684-9910-0, Graduate Texts in Mathematics 41 Springer, New York (1976). (1976) Zbl0332.10017MR1027834DOI10.1007/978-1-4684-9910-0
  3. Carlitz, L., 10.2140/pjm.1953.3.523, Pac. J. Math. 3 (1953), 523-527. (1953) Zbl0057.03703MR0056020DOI10.2140/pjm.1953.3.523
  4. Conrey, J. B., Fransen, E., Klein, R., Scott, C., 10.1006/jnth.1996.0014, J. Number Theory 56 (1996), Article No. 0014, 214-226. (1996) Zbl0851.11028MR1373548DOI10.1006/jnth.1996.0014
  5. Jia, C., 10.1006/jnth.2000.2580, J. Number Theory 87 (2001), 173-188. (2001) Zbl0976.11044MR1824141DOI10.1006/jnth.2000.2580
  6. Mordell, L. J., 10.2307/2372310, Am. J. Math. 73 (1951), 593-598. (1951) Zbl0042.27401MR0042449DOI10.2307/2372310
  7. Rademacher, H., On the transformation of log η ( τ ) , J. Indian Math. Soc., New Ser. 19 (1955), 25-30. (1955) Zbl0064.32703MR0070660
  8. Rademacher, H., Grosswald, E., Dedekind Sums, The Carus Mathematical Monographs 16 The Mathematical Association of America, Washington (1972). (1972) Zbl0251.10020MR0357299
  9. Zhang, W., 10.1023/A:1006724724840, Acta Math. Hung. 86 (2000), 275-289. (2000) Zbl0963.11049MR1756252DOI10.1023/A:1006724724840
  10. Zhang, W., 10.5802/jtnb.179, J. Théor. Nombres Bordx. 8 (1996), 429-442. (1996) Zbl0871.11033MR1438480DOI10.5802/jtnb.179
  11. Zhang, W., Liu, Y., 10.1007/s11425-010-3153-1, Sci. China, Math. 53 (2010), 2543-2550. (2010) Zbl1221.11171MR2718846DOI10.1007/s11425-010-3153-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.