Classification of rings with toroidal Jacobson graph
Krishnan Selvakumar; Manoharan Subajini
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 307-316
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSelvakumar, Krishnan, and Subajini, Manoharan. "Classification of rings with toroidal Jacobson graph." Czechoslovak Mathematical Journal 66.2 (2016): 307-316. <http://eudml.org/doc/280102>.
@article{Selvakumar2016,
abstract = {Let $R$ be a commutative ring with nonzero identity and $J(R)$ the Jacobson radical of $R$. The Jacobson graph of $R$, denoted by $\mathfrak \{J\}_R$, is defined as the graph with vertex set $R\setminus J(R)$ such that two distinct vertices $x$ and $y$ are adjacent if and only if $1-xy$ is not a unit of $R$. The genus of a simple graph $G$ is the smallest nonnegative integer $n$ such that $G$ can be embedded into an orientable surface $S_n$. In this paper, we investigate the genus number of the compact Riemann surface in which $\mathfrak \{J\}_R$ can be embedded and explicitly determine all finite commutative rings $R$ (up to isomorphism) such that $\mathfrak \{J\}_R$ is toroidal.},
author = {Selvakumar, Krishnan, Subajini, Manoharan},
journal = {Czechoslovak Mathematical Journal},
keywords = {planar graph; genus of a graph; local ring; nilpotent element; Jacobson graph},
language = {eng},
number = {2},
pages = {307-316},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Classification of rings with toroidal Jacobson graph},
url = {http://eudml.org/doc/280102},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Selvakumar, Krishnan
AU - Subajini, Manoharan
TI - Classification of rings with toroidal Jacobson graph
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 307
EP - 316
AB - Let $R$ be a commutative ring with nonzero identity and $J(R)$ the Jacobson radical of $R$. The Jacobson graph of $R$, denoted by $\mathfrak {J}_R$, is defined as the graph with vertex set $R\setminus J(R)$ such that two distinct vertices $x$ and $y$ are adjacent if and only if $1-xy$ is not a unit of $R$. The genus of a simple graph $G$ is the smallest nonnegative integer $n$ such that $G$ can be embedded into an orientable surface $S_n$. In this paper, we investigate the genus number of the compact Riemann surface in which $\mathfrak {J}_R$ can be embedded and explicitly determine all finite commutative rings $R$ (up to isomorphism) such that $\mathfrak {J}_R$ is toroidal.
LA - eng
KW - planar graph; genus of a graph; local ring; nilpotent element; Jacobson graph
UR - http://eudml.org/doc/280102
ER -
References
top- Akbari, S., Maimani, H. R., Yassemi, S., 10.1016/S0021-8693(03)00370-3, J. Algebra 270 (2003), 169-180. (2003) Zbl1032.13014MR2016655DOI10.1016/S0021-8693(03)00370-3
- Anderson, D. F., Badawi, A., 10.1016/j.jalgebra.2008.06.028, J. Algebra 320 (2008), 2706-2719. (2008) Zbl1158.13001MR2441996DOI10.1016/j.jalgebra.2008.06.028
- Anderson, D. F., Frazier, A., Lauve, A., Livingston, P. S., The zero-divisor graph of a commutative ring II, Ideal Theoretic Methods in Commutative Algebra. Proc. Conf. in Honor of Prof. J. A. Huckaba's Retirement, University of Missouri, Columbia Lecture Notes Pure Appl. Math. 220 Marcel Dekker, New York (2001), 61-72. (2001) Zbl1035.13004MR1836591
- Anderson, D. F., Livingston, P. S., 10.1006/jabr.1998.7840, J. Algebra 217 (1999), 434-447. (1999) Zbl0941.05062MR1700509DOI10.1006/jabr.1998.7840
- Ashrafi, N., Maimani, H. R., Pournaki, M. R., Yassemi, S., 10.1080/00927870903095574, Comm. Algebra 38 (2010), 2851-2871. (2010) Zbl1219.05150MR2730284DOI10.1080/00927870903095574
- Asir, T., Chelvam, T. Tamizh, 10.1007/s10474-013-0365-1, Acta Math. Hungar. 142 (2014), 444-458. (2014) MR3165492DOI10.1007/s10474-013-0365-1
- Atiyah, M. F., Macdonald, I. G., Introduction to Commutative Algebra, Addison-Wesley, London (1969). (1969) Zbl0175.03601MR0242802
- Azimi, A., Erfanian, A., Farrokhi, M., 10.1142/S0219498812501794, J. Algebra Appl. 12 Paper No. 1250179, 18 pages (2013). (2013) Zbl1262.05076MR3007915DOI10.1142/S0219498812501794
- Battle, J., Harary, F., Kodama, Y., Youngs, J. W. T., 10.1090/S0002-9904-1962-10847-7, Bull. Am. Math. Soc. 68 (1962), 565-568. (1962) Zbl0142.41501MR0155313DOI10.1090/S0002-9904-1962-10847-7
- Beck, I., 10.1016/0021-8693(88)90202-5, J. Algebra 116 (1988), 208-226. (1988) Zbl0654.13001MR0944156DOI10.1016/0021-8693(88)90202-5
- Belshoff, R., Chapman, J., 10.1016/j.jalgebra.2007.01.049, J. Algebra 316 (2007), 471-480. (2007) Zbl1129.13028MR2354873DOI10.1016/j.jalgebra.2007.01.049
- Bloomfield, N., Wickham, C., 10.1080/00927870903100093, Commun. Algebra 38 (2010), 2965-2980. (2010) Zbl1226.05132MR2730289DOI10.1080/00927870903100093
- Chen, P., A kind of graph structure of rings, Algebra Colloq. 10 (2003), 229-238. (2003) Zbl1043.16012MR1980442
- Chiang-Hsieh, H. J., Smith, N. O., Wang, H. J., Commutative rings with toroidal zero-divisor graphs, Houston J. Math. 36 (2010), 1-31. (2010) Zbl1226.05095MR2610778
- Gagarin, A., Kocay, W., Embedding graphs containing -subdivisions, Ars Comb. 64 (2002), 33-49. (2002) MR1914196
- Kaplansky, I., Commutative Rings, University of Chicago Press Chicago (1974). (1974) Zbl0296.13001MR0345945
- Khashyarmanesh, K., Khorsandi, M. R., 10.1007/s10474-012-0224-5, Acta Math. Hung. 137 (2012), 242-253. (2012) Zbl1289.05205MR2992542DOI10.1007/s10474-012-0224-5
- Li, A., Li, Q., A kind of graph structure on von-Neumann regular rings, Int. J. Algebra 4 (2010), 291-302. (2010) Zbl1210.16010MR2652245
- Maimani, H. R., Wickham, C., Yassemi, S., 10.1216/RMJ-2012-42-5-1551, Rocky Mt. J. Math. 42 (2012), 1551-1560. (2012) Zbl1254.05164MR3001816DOI10.1216/RMJ-2012-42-5-1551
- Smith, N. O., Planar zero-divisor graphs, Int. J. Commut. Rings 2 (2003), 177-186. (2003) Zbl1165.13305MR2387751
- Wang, H. J., 10.1016/j.jalgebra.2006.01.057, J. Algebra 304 (2006), 666-678. (2006) Zbl1106.13029MR2264274DOI10.1016/j.jalgebra.2006.01.057
- White, A. T., Graphs, Groups and Surfaces, North-Holland Mathematics Studies 8 North-Holland, Amsterdam (1973). (1973) Zbl0268.05102MR0780555
- Wickham, C., 10.1080/00927870701713089, Commun. Algebra 36 (2008), 325-345. (2008) Zbl1137.13015MR2387525DOI10.1080/00927870701713089
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.