Classification of rings with toroidal Jacobson graph

Krishnan Selvakumar; Manoharan Subajini

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 307-316
  • ISSN: 0011-4642

Abstract

top
Let R be a commutative ring with nonzero identity and J ( R ) the Jacobson radical of R . The Jacobson graph of R , denoted by 𝔍 R , is defined as the graph with vertex set R J ( R ) such that two distinct vertices x and y are adjacent if and only if 1 - x y is not a unit of R . The genus of a simple graph G is the smallest nonnegative integer n such that G can be embedded into an orientable surface S n . In this paper, we investigate the genus number of the compact Riemann surface in which 𝔍 R can be embedded and explicitly determine all finite commutative rings R (up to isomorphism) such that 𝔍 R is toroidal.

How to cite

top

Selvakumar, Krishnan, and Subajini, Manoharan. "Classification of rings with toroidal Jacobson graph." Czechoslovak Mathematical Journal 66.2 (2016): 307-316. <http://eudml.org/doc/280102>.

@article{Selvakumar2016,
abstract = {Let $R$ be a commutative ring with nonzero identity and $J(R)$ the Jacobson radical of $R$. The Jacobson graph of $R$, denoted by $\mathfrak \{J\}_R$, is defined as the graph with vertex set $R\setminus J(R)$ such that two distinct vertices $x$ and $y$ are adjacent if and only if $1-xy$ is not a unit of $R$. The genus of a simple graph $G$ is the smallest nonnegative integer $n$ such that $G$ can be embedded into an orientable surface $S_n$. In this paper, we investigate the genus number of the compact Riemann surface in which $\mathfrak \{J\}_R$ can be embedded and explicitly determine all finite commutative rings $R$ (up to isomorphism) such that $\mathfrak \{J\}_R$ is toroidal.},
author = {Selvakumar, Krishnan, Subajini, Manoharan},
journal = {Czechoslovak Mathematical Journal},
keywords = {planar graph; genus of a graph; local ring; nilpotent element; Jacobson graph},
language = {eng},
number = {2},
pages = {307-316},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Classification of rings with toroidal Jacobson graph},
url = {http://eudml.org/doc/280102},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Selvakumar, Krishnan
AU - Subajini, Manoharan
TI - Classification of rings with toroidal Jacobson graph
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 307
EP - 316
AB - Let $R$ be a commutative ring with nonzero identity and $J(R)$ the Jacobson radical of $R$. The Jacobson graph of $R$, denoted by $\mathfrak {J}_R$, is defined as the graph with vertex set $R\setminus J(R)$ such that two distinct vertices $x$ and $y$ are adjacent if and only if $1-xy$ is not a unit of $R$. The genus of a simple graph $G$ is the smallest nonnegative integer $n$ such that $G$ can be embedded into an orientable surface $S_n$. In this paper, we investigate the genus number of the compact Riemann surface in which $\mathfrak {J}_R$ can be embedded and explicitly determine all finite commutative rings $R$ (up to isomorphism) such that $\mathfrak {J}_R$ is toroidal.
LA - eng
KW - planar graph; genus of a graph; local ring; nilpotent element; Jacobson graph
UR - http://eudml.org/doc/280102
ER -

References

top
  1. Akbari, S., Maimani, H. R., Yassemi, S., 10.1016/S0021-8693(03)00370-3, J. Algebra 270 (2003), 169-180. (2003) Zbl1032.13014MR2016655DOI10.1016/S0021-8693(03)00370-3
  2. Anderson, D. F., Badawi, A., 10.1016/j.jalgebra.2008.06.028, J. Algebra 320 (2008), 2706-2719. (2008) Zbl1158.13001MR2441996DOI10.1016/j.jalgebra.2008.06.028
  3. Anderson, D. F., Frazier, A., Lauve, A., Livingston, P. S., The zero-divisor graph of a commutative ring II, Ideal Theoretic Methods in Commutative Algebra. Proc. Conf. in Honor of Prof. J. A. Huckaba's Retirement, University of Missouri, Columbia Lecture Notes Pure Appl. Math. 220 Marcel Dekker, New York (2001), 61-72. (2001) Zbl1035.13004MR1836591
  4. Anderson, D. F., Livingston, P. S., 10.1006/jabr.1998.7840, J. Algebra 217 (1999), 434-447. (1999) Zbl0941.05062MR1700509DOI10.1006/jabr.1998.7840
  5. Ashrafi, N., Maimani, H. R., Pournaki, M. R., Yassemi, S., 10.1080/00927870903095574, Comm. Algebra 38 (2010), 2851-2871. (2010) Zbl1219.05150MR2730284DOI10.1080/00927870903095574
  6. Asir, T., Chelvam, T. Tamizh, 10.1007/s10474-013-0365-1, Acta Math. Hungar. 142 (2014), 444-458. (2014) MR3165492DOI10.1007/s10474-013-0365-1
  7. Atiyah, M. F., Macdonald, I. G., Introduction to Commutative Algebra, Addison-Wesley, London (1969). (1969) Zbl0175.03601MR0242802
  8. Azimi, A., Erfanian, A., Farrokhi, M., 10.1142/S0219498812501794, J. Algebra Appl. 12 Paper No. 1250179, 18 pages (2013). (2013) Zbl1262.05076MR3007915DOI10.1142/S0219498812501794
  9. Battle, J., Harary, F., Kodama, Y., Youngs, J. W. T., 10.1090/S0002-9904-1962-10847-7, Bull. Am. Math. Soc. 68 (1962), 565-568. (1962) Zbl0142.41501MR0155313DOI10.1090/S0002-9904-1962-10847-7
  10. Beck, I., 10.1016/0021-8693(88)90202-5, J. Algebra 116 (1988), 208-226. (1988) Zbl0654.13001MR0944156DOI10.1016/0021-8693(88)90202-5
  11. Belshoff, R., Chapman, J., 10.1016/j.jalgebra.2007.01.049, J. Algebra 316 (2007), 471-480. (2007) Zbl1129.13028MR2354873DOI10.1016/j.jalgebra.2007.01.049
  12. Bloomfield, N., Wickham, C., 10.1080/00927870903100093, Commun. Algebra 38 (2010), 2965-2980. (2010) Zbl1226.05132MR2730289DOI10.1080/00927870903100093
  13. Chen, P., A kind of graph structure of rings, Algebra Colloq. 10 (2003), 229-238. (2003) Zbl1043.16012MR1980442
  14. Chiang-Hsieh, H. J., Smith, N. O., Wang, H. J., Commutative rings with toroidal zero-divisor graphs, Houston J. Math. 36 (2010), 1-31. (2010) Zbl1226.05095MR2610778
  15. Gagarin, A., Kocay, W., Embedding graphs containing K 5 -subdivisions, Ars Comb. 64 (2002), 33-49. (2002) MR1914196
  16. Kaplansky, I., Commutative Rings, University of Chicago Press Chicago (1974). (1974) Zbl0296.13001MR0345945
  17. Khashyarmanesh, K., Khorsandi, M. R., 10.1007/s10474-012-0224-5, Acta Math. Hung. 137 (2012), 242-253. (2012) Zbl1289.05205MR2992542DOI10.1007/s10474-012-0224-5
  18. Li, A., Li, Q., A kind of graph structure on von-Neumann regular rings, Int. J. Algebra 4 (2010), 291-302. (2010) Zbl1210.16010MR2652245
  19. Maimani, H. R., Wickham, C., Yassemi, S., 10.1216/RMJ-2012-42-5-1551, Rocky Mt. J. Math. 42 (2012), 1551-1560. (2012) Zbl1254.05164MR3001816DOI10.1216/RMJ-2012-42-5-1551
  20. Smith, N. O., Planar zero-divisor graphs, Int. J. Commut. Rings 2 (2003), 177-186. (2003) Zbl1165.13305MR2387751
  21. Wang, H. J., 10.1016/j.jalgebra.2006.01.057, J. Algebra 304 (2006), 666-678. (2006) Zbl1106.13029MR2264274DOI10.1016/j.jalgebra.2006.01.057
  22. White, A. T., Graphs, Groups and Surfaces, North-Holland Mathematics Studies 8 North-Holland, Amsterdam (1973). (1973) Zbl0268.05102MR0780555
  23. Wickham, C., 10.1080/00927870701713089, Commun. Algebra 36 (2008), 325-345. (2008) Zbl1137.13015MR2387525DOI10.1080/00927870701713089

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.