Principal blocks and -radical groups
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 431-444
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHu, Xiaohan, and Zeng, Jiwen. "Principal blocks and $p$-radical groups." Czechoslovak Mathematical Journal 66.2 (2016): 431-444. <http://eudml.org/doc/280104>.
@article{Hu2016,
abstract = {Let $G$ be a finite group and $k$ a field of characteristic $p > 0$. In this paper, we obtain several equivalent conditions to determine whether the principal block $B_\{0\}$ of a finite $p$-solvable group $G$ is $p$-radical, which means that $B_\{0\}$ has the property that $e_\{0\} (k_P)^G $ is semisimple as a $kG$-module, where $P$ is a Sylow $p$-subgroup of $G$, $k_\{P\}$ is the trivial $kP$-module, $(k_\{P\})^\{G\}$ is the induced module, and $e_\{0\}$ is the block idempotent of $B_\{0\}$. We also give the complete classification of a finite $p$-solvable group $G$ which has not more than three simple $B_\{0\}$-modules where $B_0$ is $p$-radical.},
author = {Hu, Xiaohan, Zeng, Jiwen},
journal = {Czechoslovak Mathematical Journal},
keywords = {principal block; $p$-radical group; $p$-radical block},
language = {eng},
number = {2},
pages = {431-444},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Principal blocks and $p$-radical groups},
url = {http://eudml.org/doc/280104},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Hu, Xiaohan
AU - Zeng, Jiwen
TI - Principal blocks and $p$-radical groups
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 431
EP - 444
AB - Let $G$ be a finite group and $k$ a field of characteristic $p > 0$. In this paper, we obtain several equivalent conditions to determine whether the principal block $B_{0}$ of a finite $p$-solvable group $G$ is $p$-radical, which means that $B_{0}$ has the property that $e_{0} (k_P)^G $ is semisimple as a $kG$-module, where $P$ is a Sylow $p$-subgroup of $G$, $k_{P}$ is the trivial $kP$-module, $(k_{P})^{G}$ is the induced module, and $e_{0}$ is the block idempotent of $B_{0}$. We also give the complete classification of a finite $p$-solvable group $G$ which has not more than three simple $B_{0}$-modules where $B_0$ is $p$-radical.
LA - eng
KW - principal block; $p$-radical group; $p$-radical block
UR - http://eudml.org/doc/280104
ER -
References
top- Feit, W., The Representation Theory of Finite Groups, North-Holland Mathematical Library 25 North-Holland, Amsterdam (1982). (1982) Zbl0493.20007MR0661045
- Fong, P., 10.1090/S0002-9947-1962-0139667-5, Trans. Am. Math. Soc. 103 (1962), 484-494. (1962) Zbl0105.25603MR0139667DOI10.1090/S0002-9947-1962-0139667-5
- Fong, P., Gaschütz, W., A note on the modular representations of solvable groups, J. Reine Angew. Math. 208 (1961), 73-78. (1961) Zbl0100.25801MR0138690
- Gorenstein, D., Finite Groups, Chelsea Publishing Company New York (1980). (1980) Zbl0463.20012MR0569209
- Hida, A., On -radical blocks of finite groups, Proc. Am. Math. Soc. 114 (1992), 37-38. (1992) Zbl0744.20008MR1069688
- Huppert, B., Blackburn, N., Finite Groups II, Grundlehren der Mathematischen Wissenschaften 242 Springer, Berlin (1982). (1982) Zbl0477.20001MR0650245
- Huppert, B., Blackburn, N., 10.1007/978-3-642-67997-1_1, Grundlehren der Mathematischen Wissenschaften 243 Springer, Berlin (1982). (1982) Zbl0514.20002MR0662826DOI10.1007/978-3-642-67997-1_1
- Karpilovsky, G., The Jacobson Radical of Group Algebras, North-Holland Mathematics Studies 135, Notas de Matemática 115 North-Holland, Amsterdam (1987). (1987) Zbl0618.16001MR0886889
- Knörr, R., 10.2307/1971234, Ann. Math. 110 (1979), 487-499. (1979) Zbl0388.20004MR0554380DOI10.2307/1971234
- Knörr, R., 10.1016/0021-8693(77)90313-1, J. Algebra 48 (1977), 347-367. (1977) Zbl0412.20007MR0466289DOI10.1016/0021-8693(77)90313-1
- Knörr, R., 10.1007/BF01187868, Math. Z. 148 (1976), 53-60. (1976) Zbl0308.20013MR0401897DOI10.1007/BF01187868
- Koshitani, S., 10.1016/0021-8693(90)90063-T, J. Algebra 134 (1990), 491-496. (1990) Zbl0713.20004MR1074339DOI10.1016/0021-8693(90)90063-T
- Laradji, A., 10.1006/jabr.1996.6830, J. Algebra 188 (1997), 686-691. (1997) Zbl0876.20001MR1435380DOI10.1006/jabr.1996.6830
- Morita, K., On group rings over a modular field which possess radicals expressible as principal ideals, Sci. Rep. Tokyo Bunrika Daikagu, Sect. A 4 (1951), 177-194. (1951) Zbl0053.35002MR0049909
- Motose, K., Ninomiya, Y., On the subgroups of a group such that , Math. J. Okayama Univ. 17 (1975), 171-176. (1975) MR0376837
- Nagao, H., Tsushima, Y., Representations of Finite Groups, Academic Press Boston (1989). (1989) Zbl0673.20002MR0998775
- Ninomiya, Y., Structure of -solvable groups with three -regular classes. II, Math. J. Okayama Univ. 35 (1993), 29-34. (1993) Zbl0826.20012MR1329910
- Ninomiya, Y., 10.4153/CJM-1991-034-2, Can. J. Math. 43 (1991), 559-579. (1991) Zbl0738.20012MR1118010DOI10.4153/CJM-1991-034-2
- Okuyama, T., -radical groups are -solvable, Osaka J. Math. 23 (1986), 467-469. (1986) Zbl0611.20006MR0856900
- Okuyama, T., 10.14492/hokmj/1381758078, Hokkaido Math. J. 10 (1981), 299-318. (1981) Zbl0488.20013MR0634165DOI10.14492/hokmj/1381758078
- Passman, D., Permutation Groups, Benjamin New York (1968). (1968) Zbl0179.04405MR0237627
- Saksonov, A. I., On the decomposition of a permutation group over a characteristic field, Sov. Math., Dokl. 12 (1971), 786-790. (1971) Zbl0235.20011MR0318281
- Tsushima, Y., 10.1016/0021-8693(86)90169-9, J. Algebra 103 (1986), 80-86. (1986) Zbl0597.16011MR0860689DOI10.1016/0021-8693(86)90169-9
- Tsushima, Y., On the second reduction theorem of P. Fong, Kumamoto J. Sci., Math. 13 (1978), 6-14. (1978) Zbl0385.20004MR0491921
- Wallace, D. A. R., 10.1017/S2040618500035061, Proc. Glasg. Math. Assoc. 7 (1965), 1-8. (1965) Zbl0127.01402MR0178074DOI10.1017/S2040618500035061
- Wallace, D. A. R., 10.1017/S2040618500034523, Proc. Glasg. Math. Assoc. 5 (1962), 158-159. (1962) Zbl0105.02402MR0140568DOI10.1017/S2040618500034523
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.