Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips

Rodolfo García-Rodríguez; Victor Segovia-Palacios; Vicente Parra-Vega; Marco Villalva-Lucio

International Journal of Applied Mathematics and Computer Science (2016)

  • Volume: 26, Issue: 2, page 309-323
  • ISSN: 1641-876X

Abstract

top
Object manipulation usually requires dexterity, encoded as the ability to roll, which is very difficult to achieve with robotic hands based on point contact models (subject to holonomic constraints). As an alternative for dexterous manipulation, deformable contact with hemispherical shape fingertips has been proposed to yield naturally a rolling constraint. It entails dexterity at the expense of dealing with normal and tangential forces, as well as more elaborated models and control schemes. Furthermore, the essential feature of the quality of grasp can be addressed with this type of robot hands, but it has been overlooked for deformable contact. In this paper, a passivity-based controller that considers an optimal grasping measure is proposed for robotic hands with hemispherical deformable fingertips, to manipulate circular dynamic objects. Optimal grasping that minimizes the contact wrenches is achieved through fingertip rolling until normal forces pass through the center of mass of the object, aligning the relative angle between these normal forces. The case of a circular object is developed in detail, though our proposal can be extended to objects with an arbitrary shape that admit a local decomposition by a circular curvature. Simulation and experimental results show convergence under various conditions, wherein rolling and tangent forces become instrumental to achieve such a quality of grasp.

How to cite

top

Rodolfo García-Rodríguez, et al. "Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips." International Journal of Applied Mathematics and Computer Science 26.2 (2016): 309-323. <http://eudml.org/doc/280120>.

@article{RodolfoGarcía2016,
abstract = {Object manipulation usually requires dexterity, encoded as the ability to roll, which is very difficult to achieve with robotic hands based on point contact models (subject to holonomic constraints). As an alternative for dexterous manipulation, deformable contact with hemispherical shape fingertips has been proposed to yield naturally a rolling constraint. It entails dexterity at the expense of dealing with normal and tangential forces, as well as more elaborated models and control schemes. Furthermore, the essential feature of the quality of grasp can be addressed with this type of robot hands, but it has been overlooked for deformable contact. In this paper, a passivity-based controller that considers an optimal grasping measure is proposed for robotic hands with hemispherical deformable fingertips, to manipulate circular dynamic objects. Optimal grasping that minimizes the contact wrenches is achieved through fingertip rolling until normal forces pass through the center of mass of the object, aligning the relative angle between these normal forces. The case of a circular object is developed in detail, though our proposal can be extended to objects with an arbitrary shape that admit a local decomposition by a circular curvature. Simulation and experimental results show convergence under various conditions, wherein rolling and tangent forces become instrumental to achieve such a quality of grasp.},
author = {Rodolfo García-Rodríguez, Victor Segovia-Palacios, Vicente Parra-Vega, Marco Villalva-Lucio},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {dynamic grasping; soft-fingertips; circular object},
language = {eng},
number = {2},
pages = {309-323},
title = {Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips},
url = {http://eudml.org/doc/280120},
volume = {26},
year = {2016},
}

TY - JOUR
AU - Rodolfo García-Rodríguez
AU - Victor Segovia-Palacios
AU - Vicente Parra-Vega
AU - Marco Villalva-Lucio
TI - Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips
JO - International Journal of Applied Mathematics and Computer Science
PY - 2016
VL - 26
IS - 2
SP - 309
EP - 323
AB - Object manipulation usually requires dexterity, encoded as the ability to roll, which is very difficult to achieve with robotic hands based on point contact models (subject to holonomic constraints). As an alternative for dexterous manipulation, deformable contact with hemispherical shape fingertips has been proposed to yield naturally a rolling constraint. It entails dexterity at the expense of dealing with normal and tangential forces, as well as more elaborated models and control schemes. Furthermore, the essential feature of the quality of grasp can be addressed with this type of robot hands, but it has been overlooked for deformable contact. In this paper, a passivity-based controller that considers an optimal grasping measure is proposed for robotic hands with hemispherical deformable fingertips, to manipulate circular dynamic objects. Optimal grasping that minimizes the contact wrenches is achieved through fingertip rolling until normal forces pass through the center of mass of the object, aligning the relative angle between these normal forces. The case of a circular object is developed in detail, though our proposal can be extended to objects with an arbitrary shape that admit a local decomposition by a circular curvature. Simulation and experimental results show convergence under various conditions, wherein rolling and tangent forces become instrumental to achieve such a quality of grasp.
LA - eng
KW - dynamic grasping; soft-fingertips; circular object
UR - http://eudml.org/doc/280120
ER -

References

top
  1. Akella, P. and Cutkosky, M. (1989). Manipulating with soft-fingers, IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA, pp. 767-769. 
  2. Arimoto, S. (2007). Control Theory of Multi Fingered Hands, Springer-Verlag, London. 
  3. Arimoto, S., Nguyen, P.T.A., Han, H.Y. and Doulgeri, Z. (2000). Dynamics and control of a set of dual fingers with soft tips, Robotica 18(1): 71-80. 
  4. Baumgarte, J. (1971). Stabilization of constraints and integrals of motion in dynamical systems, Computer Methods in Applied Mechanics and Engineering 1: 1-16. Zbl0262.70017
  5. Bogacki, P. and Shampine, L.F. (1989). A 3(2) pair of Runge-Kutta formulas, Applied Mathematics Letters 2(4): 321-325. Zbl0705.65055
  6. Coelho, J.A. and Grupen, R. (1994). Optimal multifingered grasp synthesis, IEEE International Conference on Robotics and Biomimetics, San Diego, CA, USA, pp. 1937-1942. 
  7. Cole, A., Hauser, J. and Sastry, S. (1989). Kinematics and control of multifingered hands with rolling contact, IEEE Transactions on Automatic Control 34(4): 398-404. Zbl0674.93047
  8. Harada, K. and Kaneko, M. (2001). Rolling based manipulation under neighborhood equilibrium, IEEE International Conference on Robotics and Automation, Seoul, Korea, pp. 2492-2498. 
  9. Ito, S., Mizukoshi, Y. and Sasaki, M. (2007). Numerical analysis for optimal posture of circular object grasped with frictions, IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, pp. 2492-2498. 
  10. Jia, Y.B. (2000). Grasping curved objects through rolling, IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, pp. 377-382. 
  11. Kim, B., Oh, S., Yi, B. and Suh, I.H. (2001). Optimal grasping based on non-dimensionalized performance indices, IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI, USA, pp. 949-956. 
  12. Marigo, A. and Bichi, A. (2007). Rolling bodies with regular surface: Controllability theory and applications, IEEE Transactions on Automatic Control 45(9): 1586-1599. Zbl0986.70002
  13. Nakashima, A., Nagase, K. and Hayakawa, Y. (2005). Simultaneous control of grasping/manipulation and contact points with rolling contact, 16th IFAC World Congress, Prague, Czech Republic, pp. 415-420. 
  14. Nguyen, P.T.A., Ozawa, R. and Arimoto, S. (2006). Manipulation of a circular object by a pair of multi-DOF robotic fingers, IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 5669-5674. 
  15. Ozawa, R., Arimoto, S., Nguyen, P.T.A., Yoshida, M. and Bae, J.H. (2004). Manipulation of a circular object in a horizontal plane by two finger robots, IEEE International Conference on Robotics and Biomimetics, Shenyang, China, pp. 517-522. 
  16. Ozawa, R., Arimoto, S., Nguyen, P.T.A., Yoshida, M. and Bae, J.H. (2005). Manipulation of a circular object without object information, IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada, pp. 1832-1838. 
  17. Parra-Vega, V., Rodriguez-Angeles, A., Arimoto, S. and Hirzinger, G. (2001). High precision constrained grasping with cooperative adaptive handcontrol, Journal of Intelligent and Robotic Systems 32(3): 235-254. Zbl0998.93031
  18. Salisbury, J. (1982). Kinematics and Force Analysis of Articulated Hands, Ph.D. thesis, Stanford University, Stanford, CA. 
  19. Shapiro, A. (2001). Force closure set of linearly controlled grasps, Technical report, Technion Israel Institute of Technology, Haifa. 
  20. Skrzypczyński, P. (2005). Uncertainty models of vision sensors in mobile robot positioning, International Journal of Applied Mathematics and Computer Science 15(1): 73-88. Zbl1083.93042
  21. Song, S., Park, J. and Choi, Y. (2012). Dual-fingered stable grasping control for an optimal force angle, IEEE Transactions on Robotics 28(1): 256-262. 
  22. Stramigioli, S. (2003). Modeling and IPC Control of Interactive Mechanical Systems-A Coordinate-free Approach, Lecture Notes in Control and Information Sciences, Vol. 266, Springer-Verlag, London. Zbl1051.93003
  23. Wen, S. and Wu, T. (2012). Computation for maximum stable grasping in dynamic force distribution, Journal of Intelligent Robot Systems 68: 225-243. Zbl1251.93087
  24. Wimboeck, T., Ott, C. and Hirzinger, G. (2006). Passivity-based object-level impedance control for a multifingered hand, IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 4621-4627. 
  25. Yoshida, M., Arimoto, S. and Bae, J.-H. (2007). Blind grasp and manipulation of a rigid object by a pair of robot fingers with soft tips, IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 4707-4714. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.