E 1 -degeneration and d ' d ' ' -lemma

Tai-Wei Chen; Chung-I Ho; Jyh-Haur Teh

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 2, page 155-162
  • ISSN: 0010-2628

Abstract

top
For a double complex ( A , d ' , d ' ' ) , we show that if it satisfies the d ' d ' ' -lemma and the spectral sequence { E r p , q } induced by A does not degenerate at E 0 , then it degenerates at E 1 . We apply this result to prove the degeneration at E 1 of a Hodge-de Rham spectral sequence on compact bi-generalized Hermitian manifolds that satisfy a version of d ' d ' ' -lemma.

How to cite

top

Chen, Tai-Wei, Ho, Chung-I, and Teh, Jyh-Haur. "$E_1$-degeneration and $d^{\prime }d^{\prime \prime }$-lemma." Commentationes Mathematicae Universitatis Carolinae 57.2 (2016): 155-162. <http://eudml.org/doc/280128>.

@article{Chen2016,
abstract = {For a double complex $(A, d^\{\prime \}, d^\{\prime \prime \})$, we show that if it satisfies the $d^\{\prime \}d^\{\prime \prime \}$-lemma and the spectral sequence $\lbrace E^\{p, q\}_r\rbrace $ induced by $A$ does not degenerate at $E_0$, then it degenerates at $E_1$. We apply this result to prove the degeneration at $E_1$ of a Hodge-de Rham spectral sequence on compact bi-generalized Hermitian manifolds that satisfy a version of $d^\{\prime \}d^\{\prime \prime \}$-lemma.},
author = {Chen, Tai-Wei, Ho, Chung-I, Teh, Jyh-Haur},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\partial \overline\{\partial \}$-lemma; Hodge-de Rham spectral sequence; $E_1$-degeneration; bi-generalized Hermitian manifold},
language = {eng},
number = {2},
pages = {155-162},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$E_1$-degeneration and $d^\{\prime \}d^\{\prime \prime \}$-lemma},
url = {http://eudml.org/doc/280128},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Chen, Tai-Wei
AU - Ho, Chung-I
AU - Teh, Jyh-Haur
TI - $E_1$-degeneration and $d^{\prime }d^{\prime \prime }$-lemma
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 2
SP - 155
EP - 162
AB - For a double complex $(A, d^{\prime }, d^{\prime \prime })$, we show that if it satisfies the $d^{\prime }d^{\prime \prime }$-lemma and the spectral sequence $\lbrace E^{p, q}_r\rbrace $ induced by $A$ does not degenerate at $E_0$, then it degenerates at $E_1$. We apply this result to prove the degeneration at $E_1$ of a Hodge-de Rham spectral sequence on compact bi-generalized Hermitian manifolds that satisfy a version of $d^{\prime }d^{\prime \prime }$-lemma.
LA - eng
KW - $\partial \overline{\partial }$-lemma; Hodge-de Rham spectral sequence; $E_1$-degeneration; bi-generalized Hermitian manifold
UR - http://eudml.org/doc/280128
ER -

References

top
  1. Cavalcanti G., New aspects of the d d c -lemma, Oxford Univ. DPhil. thesis, arXiv:math/0501406v1[math.DG]. 
  2. Cavalcanti G., Introduction to generalized complex geometry, impa, 26-Col´oquio Brasileiro de Matem´atica, 2007. Zbl1144.53090MR2375780
  3. Chen T.W., Ho C.I., Teh J.H., 10.1016/j.geomphys.2015.03.006, J. Geom. Phys. 93 (2015), 40–51. MR3340172DOI10.1016/j.geomphys.2015.03.006
  4. Deligne P., Griffiths P., Morgan J., Sullivan D., Real homotopy theory of Kähler manifolds, Invent. Math.29 (1975), no. 3, 245–274. Zbl0355.55016MR0382702
  5. Gualtieri M., 10.4007/annals.2011.174.1.3, Ann. of Math. 174 (2011), 75–123. Zbl1235.32020MR2811595DOI10.4007/annals.2011.174.1.3
  6. McCleary J., A User's Guide to Spectral Sequences, 2nd edition, Cambridge studies in advanced mathematics, 58, Cambridge University Press, Cambridge, 2001. Zbl0959.55001MR1793722

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.