A note on the commutator of two operators on a locally convex space
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 2, page 163-168
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKramar, Edvard. "A note on the commutator of two operators on a locally convex space." Commentationes Mathematicae Universitatis Carolinae 57.2 (2016): 163-168. <http://eudml.org/doc/280129>.
@article{Kramar2016,
abstract = {Denote by $C$ the commutator $AB-BA$ of two bounded operators $A$ and $B$ acting on a locally convex topological vector space. If $AC-CA=0$, we show that $C$ is a quasinilpotent operator and we prove that if $AC-CA$ is a compact operator, then $C$ is a Riesz operator.},
author = {Kramar, Edvard},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {locally convex space; commutator; nilpotent operator; compact operator; Riesz operator},
language = {eng},
number = {2},
pages = {163-168},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on the commutator of two operators on a locally convex space},
url = {http://eudml.org/doc/280129},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Kramar, Edvard
TI - A note on the commutator of two operators on a locally convex space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 2
SP - 163
EP - 168
AB - Denote by $C$ the commutator $AB-BA$ of two bounded operators $A$ and $B$ acting on a locally convex topological vector space. If $AC-CA=0$, we show that $C$ is a quasinilpotent operator and we prove that if $AC-CA$ is a compact operator, then $C$ is a Riesz operator.
LA - eng
KW - locally convex space; commutator; nilpotent operator; compact operator; Riesz operator
UR - http://eudml.org/doc/280129
ER -
References
top- Bonsall F.F., Duncan J., Complete Normed Algebras, Springer, New York-Heidelberg-Berlin, 1973. Zbl0271.46039MR0423029
- Chilana A.K., 10.1112/jlms/2.Part_3.493, J. London Math. Soc. 2 (1970), 493–503. Zbl0198.45703MR0423095DOI10.1112/jlms/2.Part_3.493
- Bračič J., Kuzma B., 10.7153/oam-01-22, Oper. Matrices 1 (2007), 385–389. Zbl1136.47025MR2344682DOI10.7153/oam-01-22
- de Bruyn G.F.C., 10.1112/plms/s3-18.3.405, Proc. London Math. Soc. 18 (1968), 405–427. Zbl0172.16801MR0226442DOI10.1112/plms/s3-18.3.405
- Kramar E., On reducibility of sets of algebraic operators on locally convex spaces, Acta Sci. Math. (Szeged) 74 (2008), 729–742. Zbl1199.47037MR2487942
- Lin C.S., 10.1090/S0002-9939-1971-0284846-0, Proc. Amer. Math. Soc. 27 (1971), 529–530. MR0284846DOI10.1090/S0002-9939-1971-0284846-0
- Pietsch A., 10.1002/mana.19600210604, Math. Nachr. 21 (1960), 347–369. Zbl0095.30903MR0123185DOI10.1002/mana.19600210604
- Ruston A.F., 10.1112/jlms/s1-29.3.318, J. London Math. Soc. 29 (1954), 318–326. Zbl0055.10902MR0062345DOI10.1112/jlms/s1-29.3.318
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.