Spectral element discretization of the heat equation with variable diffusion coefficient

Y. Daikh; W. Chikouche

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 2, page 185-200
  • ISSN: 0010-2628

Abstract

top
We are interested in the discretization of the heat equation with a diffusion coefficient depending on the space and time variables. The discretization relies on a spectral element method with respect to the space variables and Euler's implicit scheme with respect to the time variable. A detailed numerical analysis leads to optimal a priori error estimates.

How to cite

top

Daikh, Y., and Chikouche, W.. "Spectral element discretization of the heat equation with variable diffusion coefficient." Commentationes Mathematicae Universitatis Carolinae 57.2 (2016): 185-200. <http://eudml.org/doc/280134>.

@article{Daikh2016,
abstract = {We are interested in the discretization of the heat equation with a diffusion coefficient depending on the space and time variables. The discretization relies on a spectral element method with respect to the space variables and Euler's implicit scheme with respect to the time variable. A detailed numerical analysis leads to optimal a priori error estimates.},
author = {Daikh, Y., Chikouche, W.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {heat equation; diffusion coefficient; spectral element methods; a priori estimates},
language = {eng},
number = {2},
pages = {185-200},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Spectral element discretization of the heat equation with variable diffusion coefficient},
url = {http://eudml.org/doc/280134},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Daikh, Y.
AU - Chikouche, W.
TI - Spectral element discretization of the heat equation with variable diffusion coefficient
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 2
SP - 185
EP - 200
AB - We are interested in the discretization of the heat equation with a diffusion coefficient depending on the space and time variables. The discretization relies on a spectral element method with respect to the space variables and Euler's implicit scheme with respect to the time variable. A detailed numerical analysis leads to optimal a priori error estimates.
LA - eng
KW - heat equation; diffusion coefficient; spectral element methods; a priori estimates
UR - http://eudml.org/doc/280134
ER -

References

top
  1. Bergam A., Bernardi C., Mghazli Z., 10.1090/S0025-5718-04-01697-7, Math. Comp. 74 (2005), 1117–1138. Zbl1072.65124MR2136996DOI10.1090/S0025-5718-04-01697-7
  2. Bernardi C., Maday Y., Spectral Methods, Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions, Eds., North-Holland, Amsterdam, 1997. Zbl0929.35001MR1470226
  3. Bernardi C., Maday Y., Rapetti F., Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques et Applications, 45, Springer, Berlin, 2004. Zbl1063.65119MR2068204
  4. Chorfi N., Abdelwahed M., Ben Omrane I., A posteriori analysis of the spectral element discretization of the heat equation, An. Stiint. Univ. “Ovidius” Constanta Ser. Mat. 22 (2014), no. 3, 13–35. MR3215895
  5. Lions J.-L., Magenes E., Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968. Zbl0212.43801MR0247243
  6. Thomée V., Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, 25, Springer, Berlin, 1997. MR1479170
  7. Touihri M., Discrétisation spectrale des equations de Navier-Stokes à densité variable, PhD, Pierre et Marie Curie University, Paris 6, France, 1997. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.