On the Dirichlet problem in the Cegrell classes
Annales Polonici Mathematici (2004)
- Volume: 84, Issue: 3, page 273-279
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topRafał Czyż, and Per Åhag. "On the Dirichlet problem in the Cegrell classes." Annales Polonici Mathematici 84.3 (2004): 273-279. <http://eudml.org/doc/280208>.
@article{RafałCzyż2004,
abstract = {Let μ be a non-negative measure with finite mass given by $φ(dd^\{c\}ψ)ⁿ$, where ψ is a bounded plurisubharmonic function with zero boundary values and $φ ∈ L^\{q\}((dd^\{c\}ψ)ⁿ)$, φ ≥ 0, 1 ≤ q ≤ ∞. The Dirichlet problem for the complex Monge-Ampère operator with the measure μ is studied.},
author = {Rafał Czyż, Per Åhag},
journal = {Annales Polonici Mathematici},
keywords = {complex Monge-Ampère operator; Dirichlet problem; plurisubharmonic function},
language = {eng},
number = {3},
pages = {273-279},
title = {On the Dirichlet problem in the Cegrell classes},
url = {http://eudml.org/doc/280208},
volume = {84},
year = {2004},
}
TY - JOUR
AU - Rafał Czyż
AU - Per Åhag
TI - On the Dirichlet problem in the Cegrell classes
JO - Annales Polonici Mathematici
PY - 2004
VL - 84
IS - 3
SP - 273
EP - 279
AB - Let μ be a non-negative measure with finite mass given by $φ(dd^{c}ψ)ⁿ$, where ψ is a bounded plurisubharmonic function with zero boundary values and $φ ∈ L^{q}((dd^{c}ψ)ⁿ)$, φ ≥ 0, 1 ≤ q ≤ ∞. The Dirichlet problem for the complex Monge-Ampère operator with the measure μ is studied.
LA - eng
KW - complex Monge-Ampère operator; Dirichlet problem; plurisubharmonic function
UR - http://eudml.org/doc/280208
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.