Normality criteria and multiple values II
Annales Polonici Mathematici (2011)
- Volume: 102, Issue: 1, page 91-99
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topYan Xu, and Jianming Chang. "Normality criteria and multiple values II." Annales Polonici Mathematici 102.1 (2011): 91-99. <http://eudml.org/doc/280242>.
@article{YanXu2011,
abstract = {Let ℱ be a family of meromorphic functions defined in a domain D, let ψ (≢ 0, ∞) be a meromorphic function in D, and k be a positive integer. If, for every f ∈ ℱ and z ∈ D, (1) f≠ 0, $f^\{(k)\}≠ 0$; (2) all zeros of $f^\{(k)\}-ψ$ have multiplicities at least (k+2)/k; (3) all poles of ψ have multiplicities at most k, then ℱ is normal in D.},
author = {Yan Xu, Jianming Chang},
journal = {Annales Polonici Mathematici},
keywords = {meromorphic function; normal family; exceptional functions; multiplicity},
language = {eng},
number = {1},
pages = {91-99},
title = {Normality criteria and multiple values II},
url = {http://eudml.org/doc/280242},
volume = {102},
year = {2011},
}
TY - JOUR
AU - Yan Xu
AU - Jianming Chang
TI - Normality criteria and multiple values II
JO - Annales Polonici Mathematici
PY - 2011
VL - 102
IS - 1
SP - 91
EP - 99
AB - Let ℱ be a family of meromorphic functions defined in a domain D, let ψ (≢ 0, ∞) be a meromorphic function in D, and k be a positive integer. If, for every f ∈ ℱ and z ∈ D, (1) f≠ 0, $f^{(k)}≠ 0$; (2) all zeros of $f^{(k)}-ψ$ have multiplicities at least (k+2)/k; (3) all poles of ψ have multiplicities at most k, then ℱ is normal in D.
LA - eng
KW - meromorphic function; normal family; exceptional functions; multiplicity
UR - http://eudml.org/doc/280242
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.