On natural vector bundle morphisms T A s q s q T A over i d T A

A. Ntyam; A. Mba

Annales Polonici Mathematici (2009)

  • Volume: 96, Issue: 3, page 295-301
  • ISSN: 0066-2216

Abstract

top
Some properties and applications of natural vector bundle morphisms T A s q s q T A over i d T A are presented.

How to cite

top

A. Ntyam, and A. Mba. "On natural vector bundle morphisms $T_{A} ∘ ⨂_{s}^{q} → ⨂_{s}^{q} ∘ T_{A}$ over $id_{T_{A}}$." Annales Polonici Mathematici 96.3 (2009): 295-301. <http://eudml.org/doc/280269>.

@article{A2009,
abstract = {Some properties and applications of natural vector bundle morphisms $T_\{A\} ∘ ⨂_\{s\}^\{q\} → ⨂_\{s\}^\{q\} ∘ T_\{A\}$ over $id_\{T_\{A\}\}$ are presented.},
author = {A. Ntyam, A. Mba},
journal = {Annales Polonici Mathematici},
keywords = {Weil bundle; tensor field; natural transformation},
language = {eng},
number = {3},
pages = {295-301},
title = {On natural vector bundle morphisms $T_\{A\} ∘ ⨂_\{s\}^\{q\} → ⨂_\{s\}^\{q\} ∘ T_\{A\}$ over $id_\{T_\{A\}\}$},
url = {http://eudml.org/doc/280269},
volume = {96},
year = {2009},
}

TY - JOUR
AU - A. Ntyam
AU - A. Mba
TI - On natural vector bundle morphisms $T_{A} ∘ ⨂_{s}^{q} → ⨂_{s}^{q} ∘ T_{A}$ over $id_{T_{A}}$
JO - Annales Polonici Mathematici
PY - 2009
VL - 96
IS - 3
SP - 295
EP - 301
AB - Some properties and applications of natural vector bundle morphisms $T_{A} ∘ ⨂_{s}^{q} → ⨂_{s}^{q} ∘ T_{A}$ over $id_{T_{A}}$ are presented.
LA - eng
KW - Weil bundle; tensor field; natural transformation
UR - http://eudml.org/doc/280269
ER -

Citations in EuDML Documents

top
  1. P. M. Kouotchop Wamba, A. Ntyam, J. Wouafo Kamga, Some properties of tangent Dirac structures of higher order
  2. P. M. Kouotchop Wamba, A. Ntyam, Tangent lifts of higher order of multiplicative Dirac structures
  3. A. Ntyam, G. F. Wankap Nono, Bitjong Ndombol, On lifts of some projectable vector fields associated to a product preserving gauge bundle functor on vector bundles
  4. A. Ntyam, G. F. Wankap Nono, Bitjong Ndombol, Some further results on lifts of linear vector fields related to product preserving gauge bundle functors on vector bundles

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.