The gradient lemma
Annales Polonici Mathematici (2007)
- Volume: 91, Issue: 2-3, page 143-146
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topUrban Cegrell. "The gradient lemma." Annales Polonici Mathematici 91.2-3 (2007): 143-146. <http://eudml.org/doc/280328>.
@article{UrbanCegrell2007,
abstract = {We show that if a decreasing sequence of subharmonic functions converges to a function in $W_\{loc\}^\{1,2\}$ then the convergence is in $W_\{loc\}^\{1,2\}$.},
author = {Urban Cegrell},
journal = {Annales Polonici Mathematici},
keywords = {subharmonic functions; plurisubharmonic functions; Monge-Ampere operator},
language = {eng},
number = {2-3},
pages = {143-146},
title = {The gradient lemma},
url = {http://eudml.org/doc/280328},
volume = {91},
year = {2007},
}
TY - JOUR
AU - Urban Cegrell
TI - The gradient lemma
JO - Annales Polonici Mathematici
PY - 2007
VL - 91
IS - 2-3
SP - 143
EP - 146
AB - We show that if a decreasing sequence of subharmonic functions converges to a function in $W_{loc}^{1,2}$ then the convergence is in $W_{loc}^{1,2}$.
LA - eng
KW - subharmonic functions; plurisubharmonic functions; Monge-Ampere operator
UR - http://eudml.org/doc/280328
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.