A class of functions containing polyharmonic functions in ℝⁿ

V. Anandam; M. Damlakhi

Annales Polonici Mathematici (2003)

  • Volume: 82, Issue: 3, page 241-250
  • ISSN: 0066-2216

Abstract

top
Some properties of the functions of the form v ( x ) = i = 0 m | x | i h i ( x ) in ℝⁿ, n ≥ 2, where each h i is a harmonic function defined outside a compact set, are obtained using the harmonic measures.

How to cite

top

V. Anandam, and M. Damlakhi. "A class of functions containing polyharmonic functions in ℝⁿ." Annales Polonici Mathematici 82.3 (2003): 241-250. <http://eudml.org/doc/280345>.

@article{V2003,
abstract = {Some properties of the functions of the form $v(x) = ∑_\{i=0\}^m |x|^ih_i(x)$ in ℝⁿ, n ≥ 2, where each $h_i$ is a harmonic function defined outside a compact set, are obtained using the harmonic measures.},
author = {V. Anandam, M. Damlakhi},
journal = {Annales Polonici Mathematici},
keywords = {harmonic functions; superharmonic functions; subharmonic functions; Liouville-Picard theorem; Radon measure; logarithmic kernel; Newtonian kernel},
language = {eng},
number = {3},
pages = {241-250},
title = {A class of functions containing polyharmonic functions in ℝⁿ},
url = {http://eudml.org/doc/280345},
volume = {82},
year = {2003},
}

TY - JOUR
AU - V. Anandam
AU - M. Damlakhi
TI - A class of functions containing polyharmonic functions in ℝⁿ
JO - Annales Polonici Mathematici
PY - 2003
VL - 82
IS - 3
SP - 241
EP - 250
AB - Some properties of the functions of the form $v(x) = ∑_{i=0}^m |x|^ih_i(x)$ in ℝⁿ, n ≥ 2, where each $h_i$ is a harmonic function defined outside a compact set, are obtained using the harmonic measures.
LA - eng
KW - harmonic functions; superharmonic functions; subharmonic functions; Liouville-Picard theorem; Radon measure; logarithmic kernel; Newtonian kernel
UR - http://eudml.org/doc/280345
ER -

NotesEmbed ?

top

You must be logged in to post comments.