Partial regularity of minimizers of quasiconvex integrals with subquadratic growth: the general case
Menita Carozza; Giuseppe Mingione
Annales Polonici Mathematici (2001)
- Volume: 77, Issue: 3, page 219-243
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topMenita Carozza, and Giuseppe Mingione. "Partial regularity of minimizers of quasiconvex integrals with subquadratic growth: the general case." Annales Polonici Mathematici 77.3 (2001): 219-243. <http://eudml.org/doc/280357>.
@article{MenitaCarozza2001,
abstract = {We prove partial regularity for minimizers of the functional $∫_\{Ω\} f(x,u(x),Du(x))dx$ where the integrand f(x,u,ξ) is quasiconvex with subquadratic growth: $|f(x,u,ξ)| ≤ L(1+|ξ|^p)$, p < 2. We also obtain the same results for ω-minimizers.},
author = {Menita Carozza, Giuseppe Mingione},
journal = {Annales Polonici Mathematici},
keywords = {minimizers; quasiconvexity; partial regularity; rational integral; subquadratic; superquadratic},
language = {eng},
number = {3},
pages = {219-243},
title = {Partial regularity of minimizers of quasiconvex integrals with subquadratic growth: the general case},
url = {http://eudml.org/doc/280357},
volume = {77},
year = {2001},
}
TY - JOUR
AU - Menita Carozza
AU - Giuseppe Mingione
TI - Partial regularity of minimizers of quasiconvex integrals with subquadratic growth: the general case
JO - Annales Polonici Mathematici
PY - 2001
VL - 77
IS - 3
SP - 219
EP - 243
AB - We prove partial regularity for minimizers of the functional $∫_{Ω} f(x,u(x),Du(x))dx$ where the integrand f(x,u,ξ) is quasiconvex with subquadratic growth: $|f(x,u,ξ)| ≤ L(1+|ξ|^p)$, p < 2. We also obtain the same results for ω-minimizers.
LA - eng
KW - minimizers; quasiconvexity; partial regularity; rational integral; subquadratic; superquadratic
UR - http://eudml.org/doc/280357
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.