Concave domains with trivial biholomorphic invariants
Witold Jarnicki; Nikolai Nikolov
Annales Polonici Mathematici (2002)
- Volume: 79, Issue: 1, page 63-66
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topWitold Jarnicki, and Nikolai Nikolov. "Concave domains with trivial biholomorphic invariants." Annales Polonici Mathematici 79.1 (2002): 63-66. <http://eudml.org/doc/280509>.
@article{WitoldJarnicki2002,
abstract = {It is proved that if F is a convex closed set in ℂⁿ, n ≥2, containing at most one (n-1)-dimensional complex hyperplane, then the Kobayashi metric and the Lempert function of ℂⁿ∖ F identically vanish.},
author = {Witold Jarnicki, Nikolai Nikolov},
journal = {Annales Polonici Mathematici},
keywords = {holomorphic mapping; Kobayashi metric; Lempert function; concave domain in },
language = {eng},
number = {1},
pages = {63-66},
title = {Concave domains with trivial biholomorphic invariants},
url = {http://eudml.org/doc/280509},
volume = {79},
year = {2002},
}
TY - JOUR
AU - Witold Jarnicki
AU - Nikolai Nikolov
TI - Concave domains with trivial biholomorphic invariants
JO - Annales Polonici Mathematici
PY - 2002
VL - 79
IS - 1
SP - 63
EP - 66
AB - It is proved that if F is a convex closed set in ℂⁿ, n ≥2, containing at most one (n-1)-dimensional complex hyperplane, then the Kobayashi metric and the Lempert function of ℂⁿ∖ F identically vanish.
LA - eng
KW - holomorphic mapping; Kobayashi metric; Lempert function; concave domain in
UR - http://eudml.org/doc/280509
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.