Nonexistence results for the Cauchy problem of some systems of hyperbolic equations
Mokhtar Kirane; Salim Messaoudi
Annales Polonici Mathematici (2002)
- Volume: 78, Issue: 1, page 39-47
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topMokhtar Kirane, and Salim Messaoudi. "Nonexistence results for the Cauchy problem of some systems of hyperbolic equations." Annales Polonici Mathematici 78.1 (2002): 39-47. <http://eudml.org/doc/280536>.
@article{MokhtarKirane2002,
abstract = {We consider the systems of hyperbolic equations
⎧$uₜₜ = Δ(a(t,x)u) + Δ(b(t,x)v) + h(t,x)|v|^\{p\}$, t > 0, $x ∈ ℝ^\{N\}$, (S1)
⎨
⎩$vₜₜ = Δ(c(t,x)v) + k(t,x)|u|^\{q\}$, t > 0, $x ∈ ℝ^\{N\}$
⎧$uₜₜ = Δ(a(t,x)u) + h(t,x)|v|^\{p\}$, t > 0, $x ∈ ℝ^\{N\}$, (S2)
⎨
⎩$vₜₜ = Δ(c(t,x)v) + l(t,x)|v|^\{m\} + k(t,x)|u|^\{q\}$, t > 0, $x ∈ ℝ^\{N\}$, (S3)
⎧$uₜₜ = Δ(a(t,x)u) + Δ(b(t,x)v) + h(t,x)|u|^\{p\}$, t > 0, $x ∈ ℝ^\{N\}$,
⎨
⎩$vₜₜ = Δ(c(t,x)v) + k(t,x)|v|^\{q\}$, t > 0, $x ∈ ℝ^\{N\}$,
in $(0,∞) × ℝ^\{N\}$ with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.},
author = {Mokhtar Kirane, Salim Messaoudi},
journal = {Annales Polonici Mathematici},
keywords = {blow up; weak solution},
language = {eng},
number = {1},
pages = {39-47},
title = {Nonexistence results for the Cauchy problem of some systems of hyperbolic equations},
url = {http://eudml.org/doc/280536},
volume = {78},
year = {2002},
}
TY - JOUR
AU - Mokhtar Kirane
AU - Salim Messaoudi
TI - Nonexistence results for the Cauchy problem of some systems of hyperbolic equations
JO - Annales Polonici Mathematici
PY - 2002
VL - 78
IS - 1
SP - 39
EP - 47
AB - We consider the systems of hyperbolic equations
⎧$uₜₜ = Δ(a(t,x)u) + Δ(b(t,x)v) + h(t,x)|v|^{p}$, t > 0, $x ∈ ℝ^{N}$, (S1)
⎨
⎩$vₜₜ = Δ(c(t,x)v) + k(t,x)|u|^{q}$, t > 0, $x ∈ ℝ^{N}$
⎧$uₜₜ = Δ(a(t,x)u) + h(t,x)|v|^{p}$, t > 0, $x ∈ ℝ^{N}$, (S2)
⎨
⎩$vₜₜ = Δ(c(t,x)v) + l(t,x)|v|^{m} + k(t,x)|u|^{q}$, t > 0, $x ∈ ℝ^{N}$, (S3)
⎧$uₜₜ = Δ(a(t,x)u) + Δ(b(t,x)v) + h(t,x)|u|^{p}$, t > 0, $x ∈ ℝ^{N}$,
⎨
⎩$vₜₜ = Δ(c(t,x)v) + k(t,x)|v|^{q}$, t > 0, $x ∈ ℝ^{N}$,
in $(0,∞) × ℝ^{N}$ with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.
LA - eng
KW - blow up; weak solution
UR - http://eudml.org/doc/280536
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.