Nonexistence results for the Cauchy problem of some systems of hyperbolic equations

Mokhtar Kirane; Salim Messaoudi

Annales Polonici Mathematici (2002)

  • Volume: 78, Issue: 1, page 39-47
  • ISSN: 0066-2216

Abstract

top
We consider the systems of hyperbolic equations ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | v | p , t > 0, x N , (S1) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | u | q , t > 0, x N u = Δ ( a ( t , x ) u ) + h ( t , x ) | v | p , t > 0, x N , (S2) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + l ( t , x ) | v | m + k ( t , x ) | u | q , t > 0, x N , (S3) ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | u | p , t > 0, x N , ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | v | q , t > 0, x N , in ( 0 , ) × N with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.

How to cite

top

Mokhtar Kirane, and Salim Messaoudi. "Nonexistence results for the Cauchy problem of some systems of hyperbolic equations." Annales Polonici Mathematici 78.1 (2002): 39-47. <http://eudml.org/doc/280536>.

@article{MokhtarKirane2002,
abstract = {We consider the systems of hyperbolic equations ⎧$uₜₜ = Δ(a(t,x)u) + Δ(b(t,x)v) + h(t,x)|v|^\{p\}$, t > 0, $x ∈ ℝ^\{N\}$, (S1) ⎨ ⎩$vₜₜ = Δ(c(t,x)v) + k(t,x)|u|^\{q\}$, t > 0, $x ∈ ℝ^\{N\}$ ⎧$uₜₜ = Δ(a(t,x)u) + h(t,x)|v|^\{p\}$, t > 0, $x ∈ ℝ^\{N\}$, (S2) ⎨ ⎩$vₜₜ = Δ(c(t,x)v) + l(t,x)|v|^\{m\} + k(t,x)|u|^\{q\}$, t > 0, $x ∈ ℝ^\{N\}$, (S3) ⎧$uₜₜ = Δ(a(t,x)u) + Δ(b(t,x)v) + h(t,x)|u|^\{p\}$, t > 0, $x ∈ ℝ^\{N\}$, ⎨ ⎩$vₜₜ = Δ(c(t,x)v) + k(t,x)|v|^\{q\}$, t > 0, $x ∈ ℝ^\{N\}$, in $(0,∞) × ℝ^\{N\}$ with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.},
author = {Mokhtar Kirane, Salim Messaoudi},
journal = {Annales Polonici Mathematici},
keywords = {blow up; weak solution},
language = {eng},
number = {1},
pages = {39-47},
title = {Nonexistence results for the Cauchy problem of some systems of hyperbolic equations},
url = {http://eudml.org/doc/280536},
volume = {78},
year = {2002},
}

TY - JOUR
AU - Mokhtar Kirane
AU - Salim Messaoudi
TI - Nonexistence results for the Cauchy problem of some systems of hyperbolic equations
JO - Annales Polonici Mathematici
PY - 2002
VL - 78
IS - 1
SP - 39
EP - 47
AB - We consider the systems of hyperbolic equations ⎧$uₜₜ = Δ(a(t,x)u) + Δ(b(t,x)v) + h(t,x)|v|^{p}$, t > 0, $x ∈ ℝ^{N}$, (S1) ⎨ ⎩$vₜₜ = Δ(c(t,x)v) + k(t,x)|u|^{q}$, t > 0, $x ∈ ℝ^{N}$ ⎧$uₜₜ = Δ(a(t,x)u) + h(t,x)|v|^{p}$, t > 0, $x ∈ ℝ^{N}$, (S2) ⎨ ⎩$vₜₜ = Δ(c(t,x)v) + l(t,x)|v|^{m} + k(t,x)|u|^{q}$, t > 0, $x ∈ ℝ^{N}$, (S3) ⎧$uₜₜ = Δ(a(t,x)u) + Δ(b(t,x)v) + h(t,x)|u|^{p}$, t > 0, $x ∈ ℝ^{N}$, ⎨ ⎩$vₜₜ = Δ(c(t,x)v) + k(t,x)|v|^{q}$, t > 0, $x ∈ ℝ^{N}$, in $(0,∞) × ℝ^{N}$ with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.
LA - eng
KW - blow up; weak solution
UR - http://eudml.org/doc/280536
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.