top
Let k be a commutative field. For any a,b∈ k, we denote by the deformation of the 2-dimensional Weyl algebra over k associated with the Jordanian Hecke symmetry with parameters a and b. We prove that: (i) any can be embedded in the usual Weyl algebra A₂(k), and (ii) is isomorphic to A₂(k) if and only if a = b.
J. Alev, and F. Dumas. "Présentation jordanienne de l'algèbre de Weyl A₂." Annales Polonici Mathematici 76.1-2 (2001): 1-9. <http://eudml.org/doc/280672>.
@article{J2001, author = {J. Alev, F. Dumas}, journal = {Annales Polonici Mathematici}, keywords = {Weyl algebras; generators; relations; normal elements; embeddings}, language = {fre}, number = {1-2}, pages = {1-9}, title = {Présentation jordanienne de l'algèbre de Weyl A₂}, url = {http://eudml.org/doc/280672}, volume = {76}, year = {2001}, }
TY - JOUR AU - J. Alev AU - F. Dumas TI - Présentation jordanienne de l'algèbre de Weyl A₂ JO - Annales Polonici Mathematici PY - 2001 VL - 76 IS - 1-2 SP - 1 EP - 9 LA - fre KW - Weyl algebras; generators; relations; normal elements; embeddings UR - http://eudml.org/doc/280672 ER -