A generalization of Radó's theorem
Annales Polonici Mathematici (2003)
- Volume: 80, Issue: 1, page 109-112
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topE. M. Chirka. "A generalization of Radó's theorem." Annales Polonici Mathematici 80.1 (2003): 109-112. <http://eudml.org/doc/280687>.
@article{E2003,
abstract = {If Σ is a compact subset of a domain Ω ⊂ ℂ and the cluster values on ∂Σ of a holomorphic function f in Ω∖Σ, f' ≢ 0, are contained in a compact null-set for the holomorphic Dirichlet class, then f extends holomorphically onto the whole domain Ω.},
author = {E. M. Chirka},
journal = {Annales Polonici Mathematici},
keywords = {holomorphic extensions; Cantor set; analytic capacity},
language = {eng},
number = {1},
pages = {109-112},
title = {A generalization of Radó's theorem},
url = {http://eudml.org/doc/280687},
volume = {80},
year = {2003},
}
TY - JOUR
AU - E. M. Chirka
TI - A generalization of Radó's theorem
JO - Annales Polonici Mathematici
PY - 2003
VL - 80
IS - 1
SP - 109
EP - 112
AB - If Σ is a compact subset of a domain Ω ⊂ ℂ and the cluster values on ∂Σ of a holomorphic function f in Ω∖Σ, f' ≢ 0, are contained in a compact null-set for the holomorphic Dirichlet class, then f extends holomorphically onto the whole domain Ω.
LA - eng
KW - holomorphic extensions; Cantor set; analytic capacity
UR - http://eudml.org/doc/280687
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.