A generalization of Radó's theorem

E. M. Chirka

Annales Polonici Mathematici (2003)

  • Volume: 80, Issue: 1, page 109-112
  • ISSN: 0066-2216

Abstract

top
If Σ is a compact subset of a domain Ω ⊂ ℂ and the cluster values on ∂Σ of a holomorphic function f in Ω∖Σ, f' ≢ 0, are contained in a compact null-set for the holomorphic Dirichlet class, then f extends holomorphically onto the whole domain Ω.

How to cite

top

E. M. Chirka. "A generalization of Radó's theorem." Annales Polonici Mathematici 80.1 (2003): 109-112. <http://eudml.org/doc/280687>.

@article{E2003,
abstract = {If Σ is a compact subset of a domain Ω ⊂ ℂ and the cluster values on ∂Σ of a holomorphic function f in Ω∖Σ, f' ≢ 0, are contained in a compact null-set for the holomorphic Dirichlet class, then f extends holomorphically onto the whole domain Ω.},
author = {E. M. Chirka},
journal = {Annales Polonici Mathematici},
keywords = {holomorphic extensions; Cantor set; analytic capacity},
language = {eng},
number = {1},
pages = {109-112},
title = {A generalization of Radó's theorem},
url = {http://eudml.org/doc/280687},
volume = {80},
year = {2003},
}

TY - JOUR
AU - E. M. Chirka
TI - A generalization of Radó's theorem
JO - Annales Polonici Mathematici
PY - 2003
VL - 80
IS - 1
SP - 109
EP - 112
AB - If Σ is a compact subset of a domain Ω ⊂ ℂ and the cluster values on ∂Σ of a holomorphic function f in Ω∖Σ, f' ≢ 0, are contained in a compact null-set for the holomorphic Dirichlet class, then f extends holomorphically onto the whole domain Ω.
LA - eng
KW - holomorphic extensions; Cantor set; analytic capacity
UR - http://eudml.org/doc/280687
ER -

NotesEmbed ?

top

You must be logged in to post comments.