Existence of positive solutions for second order m-point boundary value problems
Annales Polonici Mathematici (2002)
- Volume: 79, Issue: 3, page 265-276
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topRuyun Ma. "Existence of positive solutions for second order m-point boundary value problems." Annales Polonici Mathematici 79.3 (2002): 265-276. <http://eudml.org/doc/280757>.
@article{RuyunMa2002,
	abstract = {Let α,β,γ,δ ≥ 0 and ϱ:= γβ + αγ + αδ > 0. Let ψ(t) = β + αt, ϕ(t) = γ + δ - γt, t ∈ [0,1]. We study the existence of positive solutions for the m-point boundary value problem
⎧u” + h(t)f(u) = 0, 0 < t < 1,
⎨$αu(0) - βu^\{\prime \}(0) = ∑_\{i=1\}^\{m-2\} a_\{i\}u(ξ_\{i\})$
⎩$γu(1) + δu^\{\prime \}(1) = ∑_\{i=1\}^\{m-2\} b_\{i\}u(ξ_\{i\})$,
where $ξ_\{i\} ∈ (0,1)$, $a_\{i\}, b_\{i\} ∈ (0,∞)$ (for i ∈ 1,…,m-2) are given constants satisfying $ϱ - ∑_\{i=1\}^\{m-2\} a_\{i\}ϕ(ξ_\{i\}) > 0$, $ϱ - ∑_\{i=1\}^\{m-2\} b_\{i\}ψ(ξ_\{i\}) > 0$ and
$Δ:= \begin\{vmatrix\} -∑_\{i=1\}^\{m-2\} a_\{i\}ψ(ξ_\{i\}) & ϱ - ∑_\{i=1\}^\{m-2\} a_\{i\}ϕ(ξ_\{i\}) \\ ϱ - ∑_\{i=1\}^\{m-2\} b_\{i\}ψ(ξ_\{i\}) & -∑_\{i=1\}^\{m-2\} b_\{i\}ϕ(ξ_\{i\}) \end\{vmatrix\} < 0$.
We show the existence of positive solutions if f is either superlinear or sublinear by a simple application of a fixed point theorem in cones. Our result extends a result established by Erbe and Wang for two-point BVPs and a result established by the author for three-point BVPs.},
	author = {Ruyun Ma},
	journal = {Annales Polonici Mathematici},
	keywords = {mulit-point boundary value problems; positive solution; fixed-point theorem},
	language = {eng},
	number = {3},
	pages = {265-276},
	title = {Existence of positive solutions for second order m-point boundary value problems},
	url = {http://eudml.org/doc/280757},
	volume = {79},
	year = {2002},
}
TY  - JOUR
AU  - Ruyun Ma
TI  - Existence of positive solutions for second order m-point boundary value problems
JO  - Annales Polonici Mathematici
PY  - 2002
VL  - 79
IS  - 3
SP  - 265
EP  - 276
AB  - Let α,β,γ,δ ≥ 0 and ϱ:= γβ + αγ + αδ > 0. Let ψ(t) = β + αt, ϕ(t) = γ + δ - γt, t ∈ [0,1]. We study the existence of positive solutions for the m-point boundary value problem
⎧u” + h(t)f(u) = 0, 0 < t < 1,
⎨$αu(0) - βu^{\prime }(0) = ∑_{i=1}^{m-2} a_{i}u(ξ_{i})$
⎩$γu(1) + δu^{\prime }(1) = ∑_{i=1}^{m-2} b_{i}u(ξ_{i})$,
where $ξ_{i} ∈ (0,1)$, $a_{i}, b_{i} ∈ (0,∞)$ (for i ∈ 1,…,m-2) are given constants satisfying $ϱ - ∑_{i=1}^{m-2} a_{i}ϕ(ξ_{i}) > 0$, $ϱ - ∑_{i=1}^{m-2} b_{i}ψ(ξ_{i}) > 0$ and
$Δ:= \begin{vmatrix} -∑_{i=1}^{m-2} a_{i}ψ(ξ_{i}) & ϱ - ∑_{i=1}^{m-2} a_{i}ϕ(ξ_{i}) \\ ϱ - ∑_{i=1}^{m-2} b_{i}ψ(ξ_{i}) & -∑_{i=1}^{m-2} b_{i}ϕ(ξ_{i}) \end{vmatrix} < 0$.
We show the existence of positive solutions if f is either superlinear or sublinear by a simple application of a fixed point theorem in cones. Our result extends a result established by Erbe and Wang for two-point BVPs and a result established by the author for three-point BVPs.
LA  - eng
KW  - mulit-point boundary value problems; positive solution; fixed-point theorem
UR  - http://eudml.org/doc/280757
ER  - 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 