Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials
Didier D'Acunto; Krzysztof Kurdyka
Annales Polonici Mathematici (2005)
- Volume: 87, Issue: 1, page 51-61
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topDidier D'Acunto, and Krzysztof Kurdyka. "Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials." Annales Polonici Mathematici 87.1 (2005): 51-61. <http://eudml.org/doc/280831>.
@article{DidierDAcunto2005,
abstract = {Let f: ℝⁿ → ℝ be a polynomial function of degree d with f(0) = 0 and ∇f(0) = 0. Łojasiewicz’s gradient inequality states that there exist C > 0 and ϱ ∈ (0,1) such that $|∇f| ≥ C|f|^\{ϱ\}$ in a neighbourhood of the origin. We prove that the smallest such exponent ϱ is not greater than $1 - R(n,d)^\{-1\}$ with $R(n,d) = d(3d-3)^\{n-1\}$.},
author = {Didier D'Acunto, Krzysztof Kurdyka},
journal = {Annales Polonici Mathematici},
keywords = {real polynomial; Lojasiewicz inequality; Lojasiewicz exponent; valley line},
language = {eng},
number = {1},
pages = {51-61},
title = {Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials},
url = {http://eudml.org/doc/280831},
volume = {87},
year = {2005},
}
TY - JOUR
AU - Didier D'Acunto
AU - Krzysztof Kurdyka
TI - Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials
JO - Annales Polonici Mathematici
PY - 2005
VL - 87
IS - 1
SP - 51
EP - 61
AB - Let f: ℝⁿ → ℝ be a polynomial function of degree d with f(0) = 0 and ∇f(0) = 0. Łojasiewicz’s gradient inequality states that there exist C > 0 and ϱ ∈ (0,1) such that $|∇f| ≥ C|f|^{ϱ}$ in a neighbourhood of the origin. We prove that the smallest such exponent ϱ is not greater than $1 - R(n,d)^{-1}$ with $R(n,d) = d(3d-3)^{n-1}$.
LA - eng
KW - real polynomial; Lojasiewicz inequality; Lojasiewicz exponent; valley line
UR - http://eudml.org/doc/280831
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.