Some global results for nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition
Ziyatkhan S. Aliyev; Gunay M. Mamedova
Annales Polonici Mathematici (2015)
- Volume: 115, Issue: 1, page 75-87
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topZiyatkhan S. Aliyev, and Gunay M. Mamedova. "Some global results for nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition." Annales Polonici Mathematici 115.1 (2015): 75-87. <http://eudml.org/doc/280848>.
@article{ZiyatkhanS2015,
abstract = {We consider nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition. We investigate the structure of the set of bifurcation points, and study the behavior of two families of continua of nontrivial solutions of this problem contained in the classes of functions having oscillation properties of the eigenfunctions of the corresponding linear problem, and bifurcating from the points and intervals of the line of trivial solutions.},
author = {Ziyatkhan S. Aliyev, Gunay M. Mamedova},
journal = {Annales Polonici Mathematici},
keywords = {nonlinear Sturm-Liouville problem; bifurcation point; global bifurcation; eigenvalue; spectral parameter in the boundary condition},
language = {eng},
number = {1},
pages = {75-87},
title = {Some global results for nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition},
url = {http://eudml.org/doc/280848},
volume = {115},
year = {2015},
}
TY - JOUR
AU - Ziyatkhan S. Aliyev
AU - Gunay M. Mamedova
TI - Some global results for nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition
JO - Annales Polonici Mathematici
PY - 2015
VL - 115
IS - 1
SP - 75
EP - 87
AB - We consider nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition. We investigate the structure of the set of bifurcation points, and study the behavior of two families of continua of nontrivial solutions of this problem contained in the classes of functions having oscillation properties of the eigenfunctions of the corresponding linear problem, and bifurcating from the points and intervals of the line of trivial solutions.
LA - eng
KW - nonlinear Sturm-Liouville problem; bifurcation point; global bifurcation; eigenvalue; spectral parameter in the boundary condition
UR - http://eudml.org/doc/280848
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.