The pluricomplex Green function on some regular pseudoconvex domains
Annales Polonici Mathematici (2014)
- Volume: 110, Issue: 3, page 209-226
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topGregor Herbort. "The pluricomplex Green function on some regular pseudoconvex domains." Annales Polonici Mathematici 110.3 (2014): 209-226. <http://eudml.org/doc/280887>.
@article{GregorHerbort2014,
abstract = {Let D be a smooth bounded pseudoconvex domain in ℂⁿ of finite type. We prove an estimate on the pluricomplex Green function $_D(z,w)$ of D that gives quantitative information on how fast the Green function vanishes if the pole w approaches the boundary. Also the Hölder continuity of the Green function is discussed.},
author = {Gregor Herbort},
journal = {Annales Polonici Mathematici},
keywords = {pluricomplex Green function; finite type; Bergman metric},
language = {eng},
number = {3},
pages = {209-226},
title = {The pluricomplex Green function on some regular pseudoconvex domains},
url = {http://eudml.org/doc/280887},
volume = {110},
year = {2014},
}
TY - JOUR
AU - Gregor Herbort
TI - The pluricomplex Green function on some regular pseudoconvex domains
JO - Annales Polonici Mathematici
PY - 2014
VL - 110
IS - 3
SP - 209
EP - 226
AB - Let D be a smooth bounded pseudoconvex domain in ℂⁿ of finite type. We prove an estimate on the pluricomplex Green function $_D(z,w)$ of D that gives quantitative information on how fast the Green function vanishes if the pole w approaches the boundary. Also the Hölder continuity of the Green function is discussed.
LA - eng
KW - pluricomplex Green function; finite type; Bergman metric
UR - http://eudml.org/doc/280887
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.