On shape and multiplicity of solutions for a singularly perturbed Neumann problem
J. Chabrowski; Peter J. Watson; Jianfu Yang
Annales Polonici Mathematici (2001)
- Volume: 77, Issue: 2, page 119-159
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topJ. Chabrowski, Peter J. Watson, and Jianfu Yang. "On shape and multiplicity of solutions for a singularly perturbed Neumann problem." Annales Polonici Mathematici 77.2 (2001): 119-159. <http://eudml.org/doc/280990>.
@article{J2001,
abstract = {We investigate the effect of the topology of the boundary ∂Ω and of the graph topology of the coefficient Q on the number of solutions of the nonlinear Neumann problem $(1_d)$.},
author = {J. Chabrowski, Peter J. Watson, Jianfu Yang},
journal = {Annales Polonici Mathematici},
keywords = {subcritical Sobolev exponent; multiple solutions},
language = {eng},
number = {2},
pages = {119-159},
title = {On shape and multiplicity of solutions for a singularly perturbed Neumann problem},
url = {http://eudml.org/doc/280990},
volume = {77},
year = {2001},
}
TY - JOUR
AU - J. Chabrowski
AU - Peter J. Watson
AU - Jianfu Yang
TI - On shape and multiplicity of solutions for a singularly perturbed Neumann problem
JO - Annales Polonici Mathematici
PY - 2001
VL - 77
IS - 2
SP - 119
EP - 159
AB - We investigate the effect of the topology of the boundary ∂Ω and of the graph topology of the coefficient Q on the number of solutions of the nonlinear Neumann problem $(1_d)$.
LA - eng
KW - subcritical Sobolev exponent; multiple solutions
UR - http://eudml.org/doc/280990
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.