Allocation of oaks to Kraft classes based on linear and nonlinear kernel discriminant variables
Bogna Zawieja; Katarzyna Kaźmierczak
Biometrical Letters (2016)
- Volume: 53, Issue: 1, page 37-46
- ISSN: 1896-3811
Access Full Article
topAbstract
topHow to cite
topBogna Zawieja, and Katarzyna Kaźmierczak. "Allocation of oaks to Kraft classes based on linear and nonlinear kernel discriminant variables." Biometrical Letters 53.1 (2016): 37-46. <http://eudml.org/doc/281148>.
@article{BognaZawieja2016,
abstract = {A method of discriminant variable determination was used to visualize the division of oak trees into Kraft classes. Usual discriminant variables and several types of kernel discriminant variables were studied. For this purpose the traits of oak (Quercus L.) trees, measured on standing trees, were used. These traits included height of tree, breast height diameter and crown projection area. The use of the Gaussian kernel and modified Gaussian kernel enabled the clearest division into Kraft classes. In particular, the latter method proved to be the most effective.},
author = {Bogna Zawieja, Katarzyna Kaźmierczak},
journal = {Biometrical Letters},
keywords = {discriminant variables; kernel; Kraft classes; oak (Quercus L.)},
language = {eng},
number = {1},
pages = {37-46},
title = {Allocation of oaks to Kraft classes based on linear and nonlinear kernel discriminant variables},
url = {http://eudml.org/doc/281148},
volume = {53},
year = {2016},
}
TY - JOUR
AU - Bogna Zawieja
AU - Katarzyna Kaźmierczak
TI - Allocation of oaks to Kraft classes based on linear and nonlinear kernel discriminant variables
JO - Biometrical Letters
PY - 2016
VL - 53
IS - 1
SP - 37
EP - 46
AB - A method of discriminant variable determination was used to visualize the division of oak trees into Kraft classes. Usual discriminant variables and several types of kernel discriminant variables were studied. For this purpose the traits of oak (Quercus L.) trees, measured on standing trees, were used. These traits included height of tree, breast height diameter and crown projection area. The use of the Gaussian kernel and modified Gaussian kernel enabled the clearest division into Kraft classes. In particular, the latter method proved to be the most effective.
LA - eng
KW - discriminant variables; kernel; Kraft classes; oak (Quercus L.)
UR - http://eudml.org/doc/281148
ER -
References
top- Anderson T.W. (2003): An introduction to multivariate statistical analysis. New York, Wiley. Zbl1039.62044
- Baudat G., Anour F. (2000): Generalized discriminant analysis using a kernel approach. Neural Computation 12: 2385-2404.[Crossref]
- Deręgowski K., Krzyśko M. (2014): A kernel based learning algorithm combining kernel discriminant coordinates and kernel principal components. Biometrical Letters 51(1): 57-73.[Crossref]
- Grala-Michalak J., Kaźmierczak K. (2011): Discriminant analysis for Kraft’s classes of trees. Biometrical Letters 48(1): 67-81.
- Jaworski A. (2004): Fundamentals of incremental and ecological regeneration and stands tending (in Polish). Państwowe Wydawnictwo Rolnicze i Leśne, Warsaw, Poland.
- Jing Z., Weiqing M., Ye Z. (2015): Fisher Linear Discriminant Method for Forest Fire Risk Points on Transmission Line. International Journal of Smart Home. 9(4): 25-34. [Crossref]
- Kaźmierczak K. (2009): Selected measures of the growth space of a single tree in maturing pine stand (in Polish). Sylwan 5: 298-303.
- Kaźmierczak K. (2010): Selected measures of the growth space of a single tree in a 50-year-old Scots pine stand (in Polish). Sylwan 154(4): 267-274.
- Kaźmierczak K. (2012): Selected measures of the growth space of a single tree in a 35-years-old pine stand (in Polish). Sylwan 156(4): 280-286.
- Kaźmierczak K. (2013): The current growth increment of pine tree stands comprising three different age classes (in Polish). Leśne Prace Badawcze, 74(2): 93-100.
- Kornacki J., Ćwik J. (2005): Statistical learning systems (in Polish). WNT Warsaw.
- Kraft G. (1884): Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Hannover, Klindworth.
- Krzyśko M. (1990): Discriminant analysis (in Polish). WNT, Warsaw. Zbl0539.62067
- Krzyśko M. (2009): Fundamentals of multivariate statistical inference (in Polish). Wydawnictwo Naukowe UAM, Poznań: 267-278.
- Krzyśko M., Wołyński W., Górecki T., Skrzybut M. (2008): Learning systems. Pattern Recognition. Cluster analysis, reduction of dimensionality (in Polish). WNT Warsaw.
- Mika S., Rätsch G., Weston J., Schölkopf B., Müller K.R. (1999): Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing, Hu Y.H., Larsen J., Wilson E., and Douglas S. (eds.), IX: 41-48.
- Thessler S., Sesnie S., Ramos Bendaña Z.S., Ruokolainen K., Tomppo E., Finegan B. (2008): Using k-nn and discriminant analyses to classify rain forest types in a Landsat TM image over northern Costa Rica. Remote Sensing of Environment, 112(5): 2485-2494.[Crossref][WoS]
- Zawieja B., Kaźmierczak K. (2015): The method of standing trees allocation to different biosocial classes. Colloquium Biometricum 45: 78-92.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.