Optics in Croke-Kleiner Spaces

Fredric D. Ancel; Julia M. Wilson

Bulletin of the Polish Academy of Sciences. Mathematics (2010)

  • Volume: 58, Issue: 2, page 147-165
  • ISSN: 0239-7269

Abstract

top
We explore the interior geometry of the CAT(0) spaces X α : 0 < α π / 2 , constructed by Croke and Kleiner [Topology 39 (2000)]. In particular, we describe a diffraction effect experienced by the family of geodesic rays that emanate from a basepoint and pass through a certain singular point called a triple point, and we describe the shadow this family casts on the boundary. This diffraction effect is codified in the Transformation Rules stated in Section 3 of this paper. The Transformation Rules have various applications. The earliest of these, described in Section 4, establishes a topological invariant of the boundaries of all the X α ’s for which α lies in the interval [π/2(n+1),π/2n), where n is a positive integer. Since the invariant changes when n changes, it provides a partition of the topological types of the boundaries of Croke-Kleiner spaces into a countable infinity of distinct classes. This countably infinite partition extends the original result of Croke and Kleiner which partitioned the topological types of the Croke-Kleiner boundaries into two distinct classes. After this countably infinite partition was proved, a finer partition of the topological types of the Croke-Kleiner boundaries into uncountably many distinct classes was established by the second author [J. Group Theory 8 (2005)], together with other applications of the Transformation Rules.

How to cite

top

Fredric D. Ancel, and Julia M. Wilson. "Optics in Croke-Kleiner Spaces." Bulletin of the Polish Academy of Sciences. Mathematics 58.2 (2010): 147-165. <http://eudml.org/doc/281348>.

@article{FredricD2010,
abstract = {We explore the interior geometry of the CAT(0) spaces $\{X_\{α\}: 0 < α ≤ π/2\}$, constructed by Croke and Kleiner [Topology 39 (2000)]. In particular, we describe a diffraction effect experienced by the family of geodesic rays that emanate from a basepoint and pass through a certain singular point called a triple point, and we describe the shadow this family casts on the boundary. This diffraction effect is codified in the Transformation Rules stated in Section 3 of this paper. The Transformation Rules have various applications. The earliest of these, described in Section 4, establishes a topological invariant of the boundaries of all the $X_\{α\}$’s for which α lies in the interval [π/2(n+1),π/2n), where n is a positive integer. Since the invariant changes when n changes, it provides a partition of the topological types of the boundaries of Croke-Kleiner spaces into a countable infinity of distinct classes. This countably infinite partition extends the original result of Croke and Kleiner which partitioned the topological types of the Croke-Kleiner boundaries into two distinct classes. After this countably infinite partition was proved, a finer partition of the topological types of the Croke-Kleiner boundaries into uncountably many distinct classes was established by the second author [J. Group Theory 8 (2005)], together with other applications of the Transformation Rules.},
author = {Fredric D. Ancel, Julia M. Wilson},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
keywords = {Croke-Kleiner space; group; boundary; topological types},
language = {eng},
number = {2},
pages = {147-165},
title = {Optics in Croke-Kleiner Spaces},
url = {http://eudml.org/doc/281348},
volume = {58},
year = {2010},
}

TY - JOUR
AU - Fredric D. Ancel
AU - Julia M. Wilson
TI - Optics in Croke-Kleiner Spaces
JO - Bulletin of the Polish Academy of Sciences. Mathematics
PY - 2010
VL - 58
IS - 2
SP - 147
EP - 165
AB - We explore the interior geometry of the CAT(0) spaces ${X_{α}: 0 < α ≤ π/2}$, constructed by Croke and Kleiner [Topology 39 (2000)]. In particular, we describe a diffraction effect experienced by the family of geodesic rays that emanate from a basepoint and pass through a certain singular point called a triple point, and we describe the shadow this family casts on the boundary. This diffraction effect is codified in the Transformation Rules stated in Section 3 of this paper. The Transformation Rules have various applications. The earliest of these, described in Section 4, establishes a topological invariant of the boundaries of all the $X_{α}$’s for which α lies in the interval [π/2(n+1),π/2n), where n is a positive integer. Since the invariant changes when n changes, it provides a partition of the topological types of the boundaries of Croke-Kleiner spaces into a countable infinity of distinct classes. This countably infinite partition extends the original result of Croke and Kleiner which partitioned the topological types of the Croke-Kleiner boundaries into two distinct classes. After this countably infinite partition was proved, a finer partition of the topological types of the Croke-Kleiner boundaries into uncountably many distinct classes was established by the second author [J. Group Theory 8 (2005)], together with other applications of the Transformation Rules.
LA - eng
KW - Croke-Kleiner space; group; boundary; topological types
UR - http://eudml.org/doc/281348
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.