Normal forms in the typed λ -calculus with tuple types

Jiří Zlatuška

Kybernetika (1985)

  • Volume: 21, Issue: 5, page 366-381
  • ISSN: 0023-5954

How to cite


Zlatuška, Jiří. "Normal forms in the typed $\lambda $-calculus with tuple types." Kybernetika 21.5 (1985): 366-381. <>.

author = {Zlatuška, Jiří},
journal = {Kybernetika},
keywords = {typed lambda calculus; tuples of terms; cartesian products of types; projection function; reduction},
language = {eng},
number = {5},
pages = {366-381},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Normal forms in the typed $\lambda $-calculus with tuple types},
url = {},
volume = {21},
year = {1985},

AU - Zlatuška, Jiří
TI - Normal forms in the typed $\lambda $-calculus with tuple types
JO - Kybernetika
PY - 1985
PB - Institute of Information Theory and Automation AS CR
VL - 21
IS - 5
SP - 366
EP - 381
LA - eng
KW - typed lambda calculus; tuples of terms; cartesian products of types; projection function; reduction
UR -
ER -


  1. H. P. Barendregt, The Lambda Calculus. Its syntax and semantics, (Studies in Logic and the Foundations of Mathematics 103.), North-Holland, Amsterdam 1981. (1981) Zbl0467.03010MR0622912
  2. A. Church, A formulation of the simple theory of types, J. Symb. Logic 5 (1948), 1, 56-68. (1948) MR0001931
  3. A. Church, The Calculi of λ -conversion, (Annals of Mathematics Studies No. 6.), Princeton University Press, Princeton 1941 (1951). (1941) Zbl0026.24205MR0005274
  4. R. O. Gandy, An early proof of normalization by A. M. Turing, In: To H. B. Curry: Essays on Combinatory Logic, Lambda-calculus and Formalism (J. R. Hindley, J. P. Seldin, eds.), Academic Press, London 1980, pp. 453 - 456. (1980) MR0592814
  5. R. O. Gandy, Proofs of strong normalization, In: [4], pp. 457-477. MR0592815
  6. M. H. A. Newman, On theories with a combinatorial definition of "equivalence", Ann. of Math. (2), 43 (1942), 223-243. (1942) Zbl0060.12501MR0007372
  7. D. S. Scott, Lectures on a Mathematical Theory of Computation, Oxford University Computing Laboratory, Technical Monograph PRG-19, 1981. (1981) MR0696963
  8. D. S. Scott, Relating theories of the λ -calculus, In: [4], pp. 403 - 450. MR0592813
  9. A. S. Troelstra (ed.), Metamathematical Investigations of Intuitionistic Arithmetic and Analysis, (Lecture Notes in Mathematics 344). Springer-Verlag, Berlin 1973. (1973) MR0325352
  10. J. Zlatuška, HIT data model. Data bases from the functional point of view, In: Proc. 11th VLDB (A. Pirotte, Y. Vassiliou, eds.), Stockholm 1985, pp. 470-477. (1985) 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.