On stable cones of polynomials via reduced Routh parameters

Ülo Nurges; Juri Belikov; Igor Artemchuk

Kybernetika (2016)

  • Volume: 52, Issue: 3, page 461-477
  • ISSN: 0023-5954

Abstract

top
A problem of inner convex approximation of a stability domain for continuous-time linear systems is addressed in the paper. A constructive procedure for generating stable cones in the polynomial coefficient space is explained. The main idea is based on a construction of so-called Routh stable line segments (half-lines) starting from a given stable point. These lines (Routh rays) represent edges of the corresponding Routh subcones that form (possibly after truncation) a polyhedral (truncated) Routh cone. An algorithm for approximating a stability domain by the Routh cone is presented.

How to cite

top

Nurges, Ülo, Belikov, Juri, and Artemchuk, Igor. "On stable cones of polynomials via reduced Routh parameters." Kybernetika 52.3 (2016): 461-477. <http://eudml.org/doc/281539>.

@article{Nurges2016,
abstract = {A problem of inner convex approximation of a stability domain for continuous-time linear systems is addressed in the paper. A constructive procedure for generating stable cones in the polynomial coefficient space is explained. The main idea is based on a construction of so-called Routh stable line segments (half-lines) starting from a given stable point. These lines (Routh rays) represent edges of the corresponding Routh subcones that form (possibly after truncation) a polyhedral (truncated) Routh cone. An algorithm for approximating a stability domain by the Routh cone is presented.},
author = {Nurges, Ülo, Belikov, Juri, Artemchuk, Igor},
journal = {Kybernetika},
keywords = {linear systems; Hurwitz stability; convex approximation},
language = {eng},
number = {3},
pages = {461-477},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On stable cones of polynomials via reduced Routh parameters},
url = {http://eudml.org/doc/281539},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Nurges, Ülo
AU - Belikov, Juri
AU - Artemchuk, Igor
TI - On stable cones of polynomials via reduced Routh parameters
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 3
SP - 461
EP - 477
AB - A problem of inner convex approximation of a stability domain for continuous-time linear systems is addressed in the paper. A constructive procedure for generating stable cones in the polynomial coefficient space is explained. The main idea is based on a construction of so-called Routh stable line segments (half-lines) starting from a given stable point. These lines (Routh rays) represent edges of the corresponding Routh subcones that form (possibly after truncation) a polyhedral (truncated) Routh cone. An algorithm for approximating a stability domain by the Routh cone is presented.
LA - eng
KW - linear systems; Hurwitz stability; convex approximation
UR - http://eudml.org/doc/281539
ER -

References

top
  1. Ackermann, J., Kaesbauer, D., 10.1016/s0005-1098(03)00034-7, Automatica 39 (2003), 937-943. Zbl1022.93016MR2138367DOI10.1016/s0005-1098(03)00034-7
  2. Artemchuk, I., Nurges, Ü., Belikov, J., Robust pole assignment via Routh rays of polynomials., In: American Control Conference, Boston 2016, pp. 7031-7036. 
  3. Artemchuk, I., Nurges, Ü., Belikov, J., Kaparin, V., 10.1109/pc.2015.7169972, In: 20th International Conference on Process Control, Štrbské Pleso 2015, pp. 255-260. DOI10.1109/pc.2015.7169972
  4. Bhattacharyya, S. P., Chapellat, H., Keel, L. H., Robust Control: The Parametric Approach., Prentice Hall, Upper Saddle River, New Jersy 1995. Zbl0838.93008
  5. Calafiore, G., ElGhaoui, L., 10.1016/j.automatica.2004.01.001, Automatica 40 (2004), 773-787. MR2152184DOI10.1016/j.automatica.2004.01.001
  6. Chapellat, H., Mansour, M., Bhattacharyya, S. P., 10.1109/13.57067, Trans. Ed. 33 (1990), 232-239. DOI10.1109/13.57067
  7. Gantmacher, F. R., 10.1126/science.131.3408.1216-a, Chelsea Publishing Company, New York 1959. Zbl0927.15002MR0107649DOI10.1126/science.131.3408.1216-a
  8. Greiner, R., 10.1109/tac.2004.825963, Trans. Automat. Control 49 (2004), 740-744. MR2057807DOI10.1109/tac.2004.825963
  9. Henrion, D., Peaucelle, D., Arzelier, D., Šebek, M., 10.1109/tac.2003.820161, Trans. Automat. Control 48 (2003), 2255-2259. MR2027255DOI10.1109/tac.2003.820161
  10. Hinrichsen, D., Kharitonov, V. L., 10.1007/bf01210203, Math. Control Signals Systems 8 (1995), 97-117. Zbl0856.93077MR1371080DOI10.1007/bf01210203
  11. Jetto, L., 10.1109/9.769376, Trans. Automat. Control 44 (1999), 1211-1216. Zbl0955.93025MR1689136DOI10.1109/9.769376
  12. Kharitonov, V. L., Asymptotic stability of an equilibrium position of a family of systems of linear differential equations., Differ. Equations 14 (1979), 1483-1485. Zbl0409.34043MR0516709
  13. Nise, N. S., Control Systems Engineering., John Wiley and Sons, Jefferson City 2010. 
  14. Nurges, Ü., 10.1109/tac.2005.854614, Trans. Automat. Control 50 (2005), 1354-1360. MR2164434DOI10.1109/tac.2005.854614
  15. Nurges, Ü., Avanessov, S., 10.1080/00207179.2014.953208, Int. J. Control 88 (2015), 335-346. Zbl1328.93228MR3293574DOI10.1080/00207179.2014.953208
  16. Nurges, Ü., Artemchuk, I., Belikov, J., 10.1109/cdc.2014.7039753, In: 53rd IEEE Conference on Decision and Control, Los Angeles 2014, pp. 2390-2395. DOI10.1109/cdc.2014.7039753
  17. Parmar, G., Mukherjee, S., Prasad, R., 10.1016/j.apm.2006.10.004, Appl. Math. Model. 31 (2007), 2542-2552. Zbl1118.93028DOI10.1016/j.apm.2006.10.004
  18. Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials: Critical Points, Zeros and Extremal Properties., Oxford University Press, London 2002. MR1954841
  19. Rantzer, A., 10.1109/9.109640, Trans. Autom. Control 37 (1992), 79-89. Zbl0747.93064MR1139617DOI10.1109/9.109640
  20. Shcherbakov, P., Dabbene, F., 10.3166/ejc.17.145-159, Eur. J. Control 17 (2011), 145-159. Zbl1227.65008MR2839112DOI10.3166/ejc.17.145-159
  21. Tsoi, A. C., 10.1049/el:19790413, Electron. Lett. 15 (1979), 575-576. DOI10.1049/el:19790413
  22. Verriest, E. I., Michiels, W., 10.1016/j.sysconle.2006.02.002, Systems Control Lett. 55 (2006), 711-718. Zbl1100.93040MR2245443DOI10.1016/j.sysconle.2006.02.002
  23. Zadeh, L. A., Desoer, C. A., Linear System Theory: The State Space Approach., MacGraw-Hill, New York 1963. Zbl1153.93302

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.