On stable cones of polynomials via reduced Routh parameters
Ülo Nurges; Juri Belikov; Igor Artemchuk
Kybernetika (2016)
- Volume: 52, Issue: 3, page 461-477
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topNurges, Ülo, Belikov, Juri, and Artemchuk, Igor. "On stable cones of polynomials via reduced Routh parameters." Kybernetika 52.3 (2016): 461-477. <http://eudml.org/doc/281539>.
@article{Nurges2016,
abstract = {A problem of inner convex approximation of a stability domain for continuous-time linear systems is addressed in the paper. A constructive procedure for generating stable cones in the polynomial coefficient space is explained. The main idea is based on a construction of so-called Routh stable line segments (half-lines) starting from a given stable point. These lines (Routh rays) represent edges of the corresponding Routh subcones that form (possibly after truncation) a polyhedral (truncated) Routh cone. An algorithm for approximating a stability domain by the Routh cone is presented.},
author = {Nurges, Ülo, Belikov, Juri, Artemchuk, Igor},
journal = {Kybernetika},
keywords = {linear systems; Hurwitz stability; convex approximation},
language = {eng},
number = {3},
pages = {461-477},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On stable cones of polynomials via reduced Routh parameters},
url = {http://eudml.org/doc/281539},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Nurges, Ülo
AU - Belikov, Juri
AU - Artemchuk, Igor
TI - On stable cones of polynomials via reduced Routh parameters
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 3
SP - 461
EP - 477
AB - A problem of inner convex approximation of a stability domain for continuous-time linear systems is addressed in the paper. A constructive procedure for generating stable cones in the polynomial coefficient space is explained. The main idea is based on a construction of so-called Routh stable line segments (half-lines) starting from a given stable point. These lines (Routh rays) represent edges of the corresponding Routh subcones that form (possibly after truncation) a polyhedral (truncated) Routh cone. An algorithm for approximating a stability domain by the Routh cone is presented.
LA - eng
KW - linear systems; Hurwitz stability; convex approximation
UR - http://eudml.org/doc/281539
ER -
References
top- Ackermann, J., Kaesbauer, D., 10.1016/s0005-1098(03)00034-7, Automatica 39 (2003), 937-943. Zbl1022.93016MR2138367DOI10.1016/s0005-1098(03)00034-7
- Artemchuk, I., Nurges, Ü., Belikov, J., Robust pole assignment via Routh rays of polynomials., In: American Control Conference, Boston 2016, pp. 7031-7036.
- Artemchuk, I., Nurges, Ü., Belikov, J., Kaparin, V., 10.1109/pc.2015.7169972, In: 20th International Conference on Process Control, Štrbské Pleso 2015, pp. 255-260. DOI10.1109/pc.2015.7169972
- Bhattacharyya, S. P., Chapellat, H., Keel, L. H., Robust Control: The Parametric Approach., Prentice Hall, Upper Saddle River, New Jersy 1995. Zbl0838.93008
- Calafiore, G., ElGhaoui, L., 10.1016/j.automatica.2004.01.001, Automatica 40 (2004), 773-787. MR2152184DOI10.1016/j.automatica.2004.01.001
- Chapellat, H., Mansour, M., Bhattacharyya, S. P., 10.1109/13.57067, Trans. Ed. 33 (1990), 232-239. DOI10.1109/13.57067
- Gantmacher, F. R., 10.1126/science.131.3408.1216-a, Chelsea Publishing Company, New York 1959. Zbl0927.15002MR0107649DOI10.1126/science.131.3408.1216-a
- Greiner, R., 10.1109/tac.2004.825963, Trans. Automat. Control 49 (2004), 740-744. MR2057807DOI10.1109/tac.2004.825963
- Henrion, D., Peaucelle, D., Arzelier, D., Šebek, M., 10.1109/tac.2003.820161, Trans. Automat. Control 48 (2003), 2255-2259. MR2027255DOI10.1109/tac.2003.820161
- Hinrichsen, D., Kharitonov, V. L., 10.1007/bf01210203, Math. Control Signals Systems 8 (1995), 97-117. Zbl0856.93077MR1371080DOI10.1007/bf01210203
- Jetto, L., 10.1109/9.769376, Trans. Automat. Control 44 (1999), 1211-1216. Zbl0955.93025MR1689136DOI10.1109/9.769376
- Kharitonov, V. L., Asymptotic stability of an equilibrium position of a family of systems of linear differential equations., Differ. Equations 14 (1979), 1483-1485. Zbl0409.34043MR0516709
- Nise, N. S., Control Systems Engineering., John Wiley and Sons, Jefferson City 2010.
- Nurges, Ü., 10.1109/tac.2005.854614, Trans. Automat. Control 50 (2005), 1354-1360. MR2164434DOI10.1109/tac.2005.854614
- Nurges, Ü., Avanessov, S., 10.1080/00207179.2014.953208, Int. J. Control 88 (2015), 335-346. Zbl1328.93228MR3293574DOI10.1080/00207179.2014.953208
- Nurges, Ü., Artemchuk, I., Belikov, J., 10.1109/cdc.2014.7039753, In: 53rd IEEE Conference on Decision and Control, Los Angeles 2014, pp. 2390-2395. DOI10.1109/cdc.2014.7039753
- Parmar, G., Mukherjee, S., Prasad, R., 10.1016/j.apm.2006.10.004, Appl. Math. Model. 31 (2007), 2542-2552. Zbl1118.93028DOI10.1016/j.apm.2006.10.004
- Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials: Critical Points, Zeros and Extremal Properties., Oxford University Press, London 2002. MR1954841
- Rantzer, A., 10.1109/9.109640, Trans. Autom. Control 37 (1992), 79-89. Zbl0747.93064MR1139617DOI10.1109/9.109640
- Shcherbakov, P., Dabbene, F., 10.3166/ejc.17.145-159, Eur. J. Control 17 (2011), 145-159. Zbl1227.65008MR2839112DOI10.3166/ejc.17.145-159
- Tsoi, A. C., 10.1049/el:19790413, Electron. Lett. 15 (1979), 575-576. DOI10.1049/el:19790413
- Verriest, E. I., Michiels, W., 10.1016/j.sysconle.2006.02.002, Systems Control Lett. 55 (2006), 711-718. Zbl1100.93040MR2245443DOI10.1016/j.sysconle.2006.02.002
- Zadeh, L. A., Desoer, C. A., Linear System Theory: The State Space Approach., MacGraw-Hill, New York 1963. Zbl1153.93302
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.