OWA operators for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making
Kybernetika (2016)
- Volume: 52, Issue: 3, page 379-402
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topTakáč, Zdenko. "OWA operators for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making." Kybernetika 52.3 (2016): 379-402. <http://eudml.org/doc/281540>.
@article{Takáč2016,
abstract = {A new concept in fuzzy sets theory, namely that of gradual element, was introduced recently. It is known that the set of gradual real numbers is not ordered linearly. We restrict our attention to a discrete case and propose a class of linear orders for discrete gradual real numbers. Then, using idea of the so-called admissible order of intervals, we present a class of linear orders for discrete gradual intervals. Once we have the linear orders it is possible to define OWA operator for discrete gradual real numbers and OWA operator for discrete gradual intervals. Recall that gradual intervals also encompass fuzzy intervals, hence our results are applicable to the setting of fuzzy intervals. Our approach is illustrated on a multi-expert decision making problem.},
author = {Takáč, Zdenko},
journal = {Kybernetika},
keywords = {OWA operator; ordered weighted averaging operator; gradual number; gradual interval; fuzzy interval; linear order; total order; multi-expert decision making; type-2 fuzzy set},
language = {eng},
number = {3},
pages = {379-402},
publisher = {Institute of Information Theory and Automation AS CR},
title = {OWA operators for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making},
url = {http://eudml.org/doc/281540},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Takáč, Zdenko
TI - OWA operators for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 3
SP - 379
EP - 402
AB - A new concept in fuzzy sets theory, namely that of gradual element, was introduced recently. It is known that the set of gradual real numbers is not ordered linearly. We restrict our attention to a discrete case and propose a class of linear orders for discrete gradual real numbers. Then, using idea of the so-called admissible order of intervals, we present a class of linear orders for discrete gradual intervals. Once we have the linear orders it is possible to define OWA operator for discrete gradual real numbers and OWA operator for discrete gradual intervals. Recall that gradual intervals also encompass fuzzy intervals, hence our results are applicable to the setting of fuzzy intervals. Our approach is illustrated on a multi-expert decision making problem.
LA - eng
KW - OWA operator; ordered weighted averaging operator; gradual number; gradual interval; fuzzy interval; linear order; total order; multi-expert decision making; type-2 fuzzy set
UR - http://eudml.org/doc/281540
ER -
References
top- Beliakov, G., Pradera, A., Calvo, T., 10.1007/978-3-540-73721-6_5, Studies in Fuzziness and Soft Computing 221 (2007), 261-269. DOI10.1007/978-3-540-73721-6_5
- Bustince, H., Barrenechea, E., Calvo, T., James, S., Beliakov, G., 10.1016/j.inffus.2011.10.002, Inform. Fusion 17 (2014), 56-64. DOI10.1016/j.inffus.2011.10.002
- Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R., 10.1016/j.fss.2012.07.015, Fuzzy Sets and Systems 220 (2013), 69-77. Zbl1284.03242MR3042258DOI10.1016/j.fss.2012.07.015
- Bustince, H., Galar, M., Bedregal, B., Kolesárová, A., Mesiar, R., 10.1109/tfuzz.2013.2265090, IEEE Trans. Fuzzy Systems 21 (2013), 1150-1162. DOI10.1109/tfuzz.2013.2265090
- Castillo, O., Melin, P., 10.1016/j.ins.2014.04.015, Inform. Sciences 279 (2014), 615-631. MR3212110DOI10.1016/j.ins.2014.04.015
- Chiclana, F., Herrera, F., Herrera-Viedma, E., 10.1016/s0165-0114(96)00339-9, Fuzzy Sets and Systems 97 (1998), 33-48. Zbl0932.91012MR1618276DOI10.1016/s0165-0114(96)00339-9
- Dubois, D., Kerre, E., Mesiar, R., Prade, H., 10.1007/978-1-4615-4429-6_11, In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), The Handbooks of Fuzzy Sets Series, Vol. 7, Springer US 2000, pp. 483-581. Zbl0988.26020MR1890240DOI10.1007/978-1-4615-4429-6_11
- Dubois, D., Prade, H., 10.1016/0020-0255(85)90027-1, Inform. Sciences 36 (1985), 85-121. Zbl0582.03040MR0813766DOI10.1016/0020-0255(85)90027-1
- Dubois, D., Prade, H., 10.1007/s00500-007-0187-6, Soft Computing 12 (2008), 165-175. Zbl1133.03026DOI10.1007/s00500-007-0187-6
- Fortin, J., Dubois, D., Fargier, H., 10.1109/tfuzz.2006.890680, IEEE Trans. Fuzzy Systems 16 (2008), 388-402. DOI10.1109/tfuzz.2006.890680
- Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E., 10.1017/cbo9781139644150, Cambridge University Press, Cambridge 2009. Zbl1206.68299MR2538324DOI10.1017/cbo9781139644150
- Herrera, F., Martínez, L., 10.1109/3477.915345, IEEE Trans. Systems Man and Cybernetics, Part B: Cybernetics 31 (2001), 227-234. DOI10.1109/3477.915345
- Karnik, N. N., Mendel, J. M., 10.1016/s0165-0114(00)00079-8, Fuzzy Sets and Systems 122 (2001), 327-348. Zbl1010.03047MR1854822DOI10.1016/s0165-0114(00)00079-8
- Kosiński, W., Prokopowicz, P., Rosa, A., 10.1109/tfuzz.2013.2243456, IEEE Trans. Fuzzy Systems 21 (2013), 1163-1169. DOI10.1109/tfuzz.2013.2243456
- Lizasoain, I., Moreno, C., 10.1016/j.fss.2012.10.012, Fuzzy Sets and Systems 224 (2013), 36-52. Zbl1284.03246MR3068107DOI10.1016/j.fss.2012.10.012
- Lodwick, W. A., Untiedt, E. A., 10.1109/nafips.2008.4531302, In: Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2008, pp. 1-6. DOI10.1109/nafips.2008.4531302
- Martin, T. P., Azvine, B., 10.1109/foci.2013.6602451, In: IEEE Symposium on Foundations of Computational Intelligence (FOCI), 2013, pp. 24-29. DOI10.1109/foci.2013.6602451
- Melin, P., Castillo, O., 10.1016/j.asoc.2014.04.017, Applied Soft Computing J. 21 (2014), 568-577. DOI10.1016/j.asoc.2014.04.017
- Mesiar, R., Kolesárová, A., Calvo, T., Komorníková, M., 10.1007/978-3-540-73723-0_7, In: Fuzzy Sets and Their Extensions: Representation, Aggregation and Models (H. Bustince et al., eds.), Springer, Berlin 2008, pp. 121-144. Zbl1147.68081DOI10.1007/978-3-540-73723-0_7
- Mizumoto, M., Tanaka, K., 10.1016/s0019-9958(76)80011-3, Information and Control 31 (1976), 312-340. Zbl0331.02042MR0449947DOI10.1016/s0019-9958(76)80011-3
- Moore, E. R., 10.1137/1.9781611970906, SIAM 1979. Zbl0417.65022MR0551212DOI10.1137/1.9781611970906
- Moore, E. R., Lodwick, W. A., 10.1016/s0165-0114(02)00246-4, Fuzzy Sets and Systems 135 (2003), 5-9. Zbl1015.03513MR1977533DOI10.1016/s0165-0114(02)00246-4
- Ochoa, G., Lizasoain, I., Paternain, D., Bustince, H., Pal, N. R., 10.2991/ifsa-eusflat-15.2015.178, In: Proc. IFSA-EUSFLAT 2015, pp. 1261-1265. DOI10.2991/ifsa-eusflat-15.2015.178
- Roubens, M., 10.1016/s0165-0114(97)00087-0, Fuzzy Sets and Systems 90 (1997), 199-206. Zbl0921.90007MR1486262DOI10.1016/s0165-0114(97)00087-0
- Sánchez, D., Delgado, M., Vila, M. A., Chamorro-Martínez, J., 10.1016/j.fss.2011.07.002, Fuzzy Sets and Systems 192 (2012), 159-175. Zbl1238.68164MR2878560DOI10.1016/j.fss.2011.07.002
- Takáč, Z., 10.1016/j.ins.2014.02.116, Inform. Sciences 271 (2014), 1-13. MR3191831DOI10.1016/j.ins.2014.02.116
- Takáč, Z., 10.2991/ifsa-eusflat-15.2015.39, In: Proc. IFSA-EUSFLAT 2015, pp. 260-266. DOI10.2991/ifsa-eusflat-15.2015.39
- Walker, C. L., Walker, E. A., 10.1016/j.fss.2003.12.003, Fuzzy Sets and Systems 149 (2005), 309-347. Zbl1152.03331MR2116888DOI10.1016/j.fss.2003.12.003
- Xu, Z. S., Da, Q. L., 10.1002/int.10038, Int. J. Intelligent Systems 17 (2002), 569-575. Zbl1016.68025DOI10.1002/int.10038
- Yager, R. R., 10.1109/21.87068, IEEE Transactions on Systems Man and Cybernetics 18 (1988), 183-190. Zbl0637.90057MR0931863DOI10.1109/21.87068
- Zhou, S. M., Chiclana, F., John, R. I., Garibaldi, J. M., 10.1016/j.fss.2008.06.018, Fuzzy Sets and Systems 159 (2008), 3281-3296. Zbl1187.68619MR2467606DOI10.1016/j.fss.2008.06.018
- Zhou, S. M., Chiclana, F., John, R. I., Garibaldi, J. M., 10.1109/tkde.2010.191, IEEE Tran. Knowledge Data Engrg. 23 (2011), 1455-1468. DOI10.1109/tkde.2010.191
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.