OWA operators for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making

Zdenko Takáč

Kybernetika (2016)

  • Volume: 52, Issue: 3, page 379-402
  • ISSN: 0023-5954

Abstract

top
A new concept in fuzzy sets theory, namely that of gradual element, was introduced recently. It is known that the set of gradual real numbers is not ordered linearly. We restrict our attention to a discrete case and propose a class of linear orders for discrete gradual real numbers. Then, using idea of the so-called admissible order of intervals, we present a class of linear orders for discrete gradual intervals. Once we have the linear orders it is possible to define OWA operator for discrete gradual real numbers and OWA operator for discrete gradual intervals. Recall that gradual intervals also encompass fuzzy intervals, hence our results are applicable to the setting of fuzzy intervals. Our approach is illustrated on a multi-expert decision making problem.

How to cite

top

Takáč, Zdenko. "OWA operators for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making." Kybernetika 52.3 (2016): 379-402. <http://eudml.org/doc/281540>.

@article{Takáč2016,
abstract = {A new concept in fuzzy sets theory, namely that of gradual element, was introduced recently. It is known that the set of gradual real numbers is not ordered linearly. We restrict our attention to a discrete case and propose a class of linear orders for discrete gradual real numbers. Then, using idea of the so-called admissible order of intervals, we present a class of linear orders for discrete gradual intervals. Once we have the linear orders it is possible to define OWA operator for discrete gradual real numbers and OWA operator for discrete gradual intervals. Recall that gradual intervals also encompass fuzzy intervals, hence our results are applicable to the setting of fuzzy intervals. Our approach is illustrated on a multi-expert decision making problem.},
author = {Takáč, Zdenko},
journal = {Kybernetika},
keywords = {OWA operator; ordered weighted averaging operator; gradual number; gradual interval; fuzzy interval; linear order; total order; multi-expert decision making; type-2 fuzzy set},
language = {eng},
number = {3},
pages = {379-402},
publisher = {Institute of Information Theory and Automation AS CR},
title = {OWA operators for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making},
url = {http://eudml.org/doc/281540},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Takáč, Zdenko
TI - OWA operators for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 3
SP - 379
EP - 402
AB - A new concept in fuzzy sets theory, namely that of gradual element, was introduced recently. It is known that the set of gradual real numbers is not ordered linearly. We restrict our attention to a discrete case and propose a class of linear orders for discrete gradual real numbers. Then, using idea of the so-called admissible order of intervals, we present a class of linear orders for discrete gradual intervals. Once we have the linear orders it is possible to define OWA operator for discrete gradual real numbers and OWA operator for discrete gradual intervals. Recall that gradual intervals also encompass fuzzy intervals, hence our results are applicable to the setting of fuzzy intervals. Our approach is illustrated on a multi-expert decision making problem.
LA - eng
KW - OWA operator; ordered weighted averaging operator; gradual number; gradual interval; fuzzy interval; linear order; total order; multi-expert decision making; type-2 fuzzy set
UR - http://eudml.org/doc/281540
ER -

References

top
  1. Beliakov, G., Pradera, A., Calvo, T., 10.1007/978-3-540-73721-6_5, Studies in Fuzziness and Soft Computing 221 (2007), 261-269. DOI10.1007/978-3-540-73721-6_5
  2. Bustince, H., Barrenechea, E., Calvo, T., James, S., Beliakov, G., 10.1016/j.inffus.2011.10.002, Inform. Fusion 17 (2014), 56-64. DOI10.1016/j.inffus.2011.10.002
  3. Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R., 10.1016/j.fss.2012.07.015, Fuzzy Sets and Systems 220 (2013), 69-77. Zbl1284.03242MR3042258DOI10.1016/j.fss.2012.07.015
  4. Bustince, H., Galar, M., Bedregal, B., Kolesárová, A., Mesiar, R., 10.1109/tfuzz.2013.2265090, IEEE Trans. Fuzzy Systems 21 (2013), 1150-1162. DOI10.1109/tfuzz.2013.2265090
  5. Castillo, O., Melin, P., 10.1016/j.ins.2014.04.015, Inform. Sciences 279 (2014), 615-631. MR3212110DOI10.1016/j.ins.2014.04.015
  6. Chiclana, F., Herrera, F., Herrera-Viedma, E., 10.1016/s0165-0114(96)00339-9, Fuzzy Sets and Systems 97 (1998), 33-48. Zbl0932.91012MR1618276DOI10.1016/s0165-0114(96)00339-9
  7. Dubois, D., Kerre, E., Mesiar, R., Prade, H., 10.1007/978-1-4615-4429-6_11, In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), The Handbooks of Fuzzy Sets Series, Vol. 7, Springer US 2000, pp. 483-581. Zbl0988.26020MR1890240DOI10.1007/978-1-4615-4429-6_11
  8. Dubois, D., Prade, H., 10.1016/0020-0255(85)90027-1, Inform. Sciences 36 (1985), 85-121. Zbl0582.03040MR0813766DOI10.1016/0020-0255(85)90027-1
  9. Dubois, D., Prade, H., 10.1007/s00500-007-0187-6, Soft Computing 12 (2008), 165-175. Zbl1133.03026DOI10.1007/s00500-007-0187-6
  10. Fortin, J., Dubois, D., Fargier, H., 10.1109/tfuzz.2006.890680, IEEE Trans. Fuzzy Systems 16 (2008), 388-402. DOI10.1109/tfuzz.2006.890680
  11. Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E., 10.1017/cbo9781139644150, Cambridge University Press, Cambridge 2009. Zbl1206.68299MR2538324DOI10.1017/cbo9781139644150
  12. Herrera, F., Martínez, L., 10.1109/3477.915345, IEEE Trans. Systems Man and Cybernetics, Part B: Cybernetics 31 (2001), 227-234. DOI10.1109/3477.915345
  13. Karnik, N. N., Mendel, J. M., 10.1016/s0165-0114(00)00079-8, Fuzzy Sets and Systems 122 (2001), 327-348. Zbl1010.03047MR1854822DOI10.1016/s0165-0114(00)00079-8
  14. Kosiński, W., Prokopowicz, P., Rosa, A., 10.1109/tfuzz.2013.2243456, IEEE Trans. Fuzzy Systems 21 (2013), 1163-1169. DOI10.1109/tfuzz.2013.2243456
  15. Lizasoain, I., Moreno, C., 10.1016/j.fss.2012.10.012, Fuzzy Sets and Systems 224 (2013), 36-52. Zbl1284.03246MR3068107DOI10.1016/j.fss.2012.10.012
  16. Lodwick, W. A., Untiedt, E. A., 10.1109/nafips.2008.4531302, In: Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2008, pp. 1-6. DOI10.1109/nafips.2008.4531302
  17. Martin, T. P., Azvine, B., 10.1109/foci.2013.6602451, In: IEEE Symposium on Foundations of Computational Intelligence (FOCI), 2013, pp. 24-29. DOI10.1109/foci.2013.6602451
  18. Melin, P., Castillo, O., 10.1016/j.asoc.2014.04.017, Applied Soft Computing J. 21 (2014), 568-577. DOI10.1016/j.asoc.2014.04.017
  19. Mesiar, R., Kolesárová, A., Calvo, T., Komorníková, M., 10.1007/978-3-540-73723-0_7, In: Fuzzy Sets and Their Extensions: Representation, Aggregation and Models (H. Bustince et al., eds.), Springer, Berlin 2008, pp. 121-144. Zbl1147.68081DOI10.1007/978-3-540-73723-0_7
  20. Mizumoto, M., Tanaka, K., 10.1016/s0019-9958(76)80011-3, Information and Control 31 (1976), 312-340. Zbl0331.02042MR0449947DOI10.1016/s0019-9958(76)80011-3
  21. Moore, E. R., 10.1137/1.9781611970906, SIAM 1979. Zbl0417.65022MR0551212DOI10.1137/1.9781611970906
  22. Moore, E. R., Lodwick, W. A., 10.1016/s0165-0114(02)00246-4, Fuzzy Sets and Systems 135 (2003), 5-9. Zbl1015.03513MR1977533DOI10.1016/s0165-0114(02)00246-4
  23. Ochoa, G., Lizasoain, I., Paternain, D., Bustince, H., Pal, N. R., 10.2991/ifsa-eusflat-15.2015.178, In: Proc. IFSA-EUSFLAT 2015, pp. 1261-1265. DOI10.2991/ifsa-eusflat-15.2015.178
  24. Roubens, M., 10.1016/s0165-0114(97)00087-0, Fuzzy Sets and Systems 90 (1997), 199-206. Zbl0921.90007MR1486262DOI10.1016/s0165-0114(97)00087-0
  25. Sánchez, D., Delgado, M., Vila, M. A., Chamorro-Martínez, J., 10.1016/j.fss.2011.07.002, Fuzzy Sets and Systems 192 (2012), 159-175. Zbl1238.68164MR2878560DOI10.1016/j.fss.2011.07.002
  26. Takáč, Z., 10.1016/j.ins.2014.02.116, Inform. Sciences 271 (2014), 1-13. MR3191831DOI10.1016/j.ins.2014.02.116
  27. Takáč, Z., 10.2991/ifsa-eusflat-15.2015.39, In: Proc. IFSA-EUSFLAT 2015, pp. 260-266. DOI10.2991/ifsa-eusflat-15.2015.39
  28. Walker, C. L., Walker, E. A., 10.1016/j.fss.2003.12.003, Fuzzy Sets and Systems 149 (2005), 309-347. Zbl1152.03331MR2116888DOI10.1016/j.fss.2003.12.003
  29. Xu, Z. S., Da, Q. L., 10.1002/int.10038, Int. J. Intelligent Systems 17 (2002), 569-575. Zbl1016.68025DOI10.1002/int.10038
  30. Yager, R. R., 10.1109/21.87068, IEEE Transactions on Systems Man and Cybernetics 18 (1988), 183-190. Zbl0637.90057MR0931863DOI10.1109/21.87068
  31. Zhou, S. M., Chiclana, F., John, R. I., Garibaldi, J. M., 10.1016/j.fss.2008.06.018, Fuzzy Sets and Systems 159 (2008), 3281-3296. Zbl1187.68619MR2467606DOI10.1016/j.fss.2008.06.018
  32. Zhou, S. M., Chiclana, F., John, R. I., Garibaldi, J. M., 10.1109/tkde.2010.191, IEEE Tran. Knowledge Data Engrg. 23 (2011), 1455-1468. DOI10.1109/tkde.2010.191

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.