An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games

Kristal K. Trejo; Julio B. Clempner; Alexander S. Poznyak

Kybernetika (2016)

  • Volume: 52, Issue: 2, page 258-279
  • ISSN: 0023-5954

Abstract

top
This paper presents a novel approach for computing the strong Stackelberg/Nash equilibrium for Markov chains games. For solving the cooperative n -leaders and m -followers Markov game we consider the minimization of the L p - norm that reduces the distance to the utopian point in the Euclidian space. Then, we reduce the optimization problem to find a Pareto optimal solution. We employ a bi-level programming method implemented by the extraproximal optimization approach for computing the strong L p - Stackelberg/Nash equilibrium. We validate the proposed method theoretically and by a numerical experiment related to marketing strategies for supermarkets.

How to cite

top

Trejo, Kristal K., Clempner, Julio B., and Poznyak, Alexander S.. "An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games." Kybernetika 52.2 (2016): 258-279. <http://eudml.org/doc/281546>.

@article{Trejo2016,
abstract = {This paper presents a novel approach for computing the strong Stackelberg/Nash equilibrium for Markov chains games. For solving the cooperative $n$-leaders and $m$-followers Markov game we consider the minimization of the $L_\{p\}-$norm that reduces the distance to the utopian point in the Euclidian space. Then, we reduce the optimization problem to find a Pareto optimal solution. We employ a bi-level programming method implemented by the extraproximal optimization approach for computing the strong $L_\{p\}-$Stackelberg/Nash equilibrium. We validate the proposed method theoretically and by a numerical experiment related to marketing strategies for supermarkets.},
author = {Trejo, Kristal K., Clempner, Julio B., Poznyak, Alexander S.},
journal = {Kybernetika},
keywords = {strong equilibrium; Stackelberg and Nash; $L_\{p\}-$norm; Markov chains; strong equilibrium; Stackelberg and Nash; -norm; Markov chains},
language = {eng},
number = {2},
pages = {258-279},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games},
url = {http://eudml.org/doc/281546},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Trejo, Kristal K.
AU - Clempner, Julio B.
AU - Poznyak, Alexander S.
TI - An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 2
SP - 258
EP - 279
AB - This paper presents a novel approach for computing the strong Stackelberg/Nash equilibrium for Markov chains games. For solving the cooperative $n$-leaders and $m$-followers Markov game we consider the minimization of the $L_{p}-$norm that reduces the distance to the utopian point in the Euclidian space. Then, we reduce the optimization problem to find a Pareto optimal solution. We employ a bi-level programming method implemented by the extraproximal optimization approach for computing the strong $L_{p}-$Stackelberg/Nash equilibrium. We validate the proposed method theoretically and by a numerical experiment related to marketing strategies for supermarkets.
LA - eng
KW - strong equilibrium; Stackelberg and Nash; $L_{p}-$norm; Markov chains; strong equilibrium; Stackelberg and Nash; -norm; Markov chains
UR - http://eudml.org/doc/281546
ER -

References

top
  1. Aiyoshi, E., Shimizu, K., 10.1109/tsmc.1981.4308712, IEEE Trans. Systems, Man, and Cybernet. 11 (1981), 444-449. MR0631815DOI10.1109/tsmc.1981.4308712
  2. Antipin, A. S., An extraproximal method for solving equilibrium programming problems and games., Comput. Math. and Math. Phys. 45 (2005), 11, 1893-1914. MR2203222
  3. Bard, J., 10.1016/0305-0483(83)90038-5, Omega 11 (1983), 5, 457-468. DOI10.1016/0305-0483(83)90038-5
  4. Bard, J., 10.1007/978-1-4757-2836-1, Kluwer Academic, Dordrecht 1998. MR1680111DOI10.1007/978-1-4757-2836-1
  5. Bard, J., Falk, J., 10.1016/0305-0548(82)90007-7, Comput. Oper. Res. 9 (1982), 77-100. MR0768598DOI10.1016/0305-0548(82)90007-7
  6. Bianco, L., Caramia, M., Giordani, S., 10.1016/j.trc.2008.10.001, Transport. Res. Part C: Emerging Technol. 17 (2009), 2, 175-196. DOI10.1016/j.trc.2008.10.001
  7. Brotcorne, L., Labb, M., Marcotte, P., Savard, G., 10.1287/trsc.35.4.345.10433, Transport. Sci. 35 (2001), 345-358. DOI10.1287/trsc.35.4.345.10433
  8. Clempner, J. B., Poznyak, A. S., 10.1007/s11518-014-5260-y, J. Systems Sci. and Systems Engrg. 23 (2014), 4, 439-459. DOI10.1007/s11518-014-5260-y
  9. Clempner, J. B., Poznyak, A. S., 10.1016/j.eswa.2014.12.034, Expert Systems Appl. 42 (2015), 8, 3967-3979. DOI10.1016/j.eswa.2014.12.034
  10. Cote, J., Marcotte, P., Savard, G., 10.1057/palgrave.rpm.5170046, J. Revenue and Pricing Management 2 (2003), 1, 23-36. DOI10.1057/palgrave.rpm.5170046
  11. Deb, K., Sinha, A., 10.1162/evco_a_00015, Evolutionary Comput. J. 18 (2010), 3, 403-449. DOI10.1162/evco_a_00015
  12. Dempe, S., Discrete Bilevel Optimization Problems., Technical ReportInstitut fur Wirtschaftsinformatik, Universitat Leipzig 2001. 
  13. Dempe, S., Kalashnikov, V., Rios-Mercado, R, 10.1016/j.ejor.2004.01.047, Europ. J. Oper. Res. 166 (2005), 2, 469-488. Zbl1064.90029MR2136379DOI10.1016/j.ejor.2004.01.047
  14. DeNegre, S., Ralphs, T., 10.1007/978-0-387-88843-9_4, Oper. Res. Cyber-Infrastruct. 47 (2009), 65-78. DOI10.1007/978-0-387-88843-9_4
  15. Fampa, M., Barroso, L., Candal, D., Simonetti, L., 10.1007/s10589-007-9066-4, Comput. Optim. Appl. 39 (2008), 2, 121-142. Zbl1147.90392MR2373242DOI10.1007/s10589-007-9066-4
  16. Fortuny-Amat, J., McCarl, B., 10.1057/jors.1981.156, J. Oper. Res. Soc. xx (1981), 783-792. Zbl0459.90067MR0626944DOI10.1057/jors.1981.156
  17. Germeyer, Y. B., Introduction to the Theory of Operations Research., Nauka, Moscow 1971. MR0327275
  18. Germeyer, Y. B., Games with Nonantagonistic Interests., Nauka, Moscow 1976. 
  19. Herskovits, J., Leontiev, A., Dias, G., Santos, G., 10.1007/s001580050149, Struct. Multidiscipl. Optim. 20 (2000), 214-221. DOI10.1007/s001580050149
  20. Koppe, M., Queyranne, M., Ryan, C. T., 10.1007/s10957-010-9668-3, J. Optim. Theory Appl. 146 (2009), 1, 137-150. MR2657828DOI10.1007/s10957-010-9668-3
  21. Labbe, M., Marcotte, P., Savard, G., 10.1287/mnsc.44.12.1608, Management Sci. 44 (1998), 1608-1622. Zbl0989.90014DOI10.1287/mnsc.44.12.1608
  22. Lim, C., Smith, J., 10.1287/mnsc.44.12.1608, IIE Trans. 39 (2007), 1, 15-26. DOI10.1287/mnsc.44.12.1608
  23. Morton, D., Pan, F., Saeger, K., 10.1080/07408170500488956, IIE Trans. 39 (2007), 1, 3-14. DOI10.1080/07408170500488956
  24. Naoum-Sawaya, J., Elhedhli, S., 10.1007/s10898-010-9585-x, J. Global Optim. 50 (2011), 345-362. Zbl1231.91126MR2799570DOI10.1007/s10898-010-9585-x
  25. Poznyak, A. S., Advance Mathematical Tools for Automatic Control Engineers. Vol 2 Deterministic Techniques., Elsevier, Amsterdam 2009. MR2582931
  26. Poznyak, A. S., Najim, K., Gomez-Ramirez, E., Self-Learning Control of Finite Markov Chains., Marcel Dekker, New York 2000. Zbl0960.93001MR1760540
  27. Salmeron, J., Wood, K., Baldick, R., 10.1109/tpwrs.2004.825888, IEEE Trans. Power Syst. 19 (2004), 2, 905-912. DOI10.1109/tpwrs.2004.825888
  28. Tanaka, K., 10.1016/0898-1221(89)90135-1, Comp. Math. Appl. 18 (1989), 1-3, 181-188. Zbl0686.90047MR1000409DOI10.1016/0898-1221(89)90135-1
  29. Tanaka, K., Yokoyama, K., 10.1016/0022-247x(91)90314-p, J. Math. Anal. Appl. 160 (1991), 413-423. MR1126126DOI10.1016/0022-247x(91)90314-p
  30. Trejo, K. K., Clempner, J. B., Poznyak, A. S., 10.1515/amcs-2015-0026, Int. J. Appl. Math. Computer Sci. 25 (2015), 2, 337-351. MR3363520DOI10.1515/amcs-2015-0026
  31. Trejo, K. K., Clempner, J. B., Poznyak, A. S., 10.1016/j.engappai.2014.09.002, Engrg. Appl. Artif. Intell. 37 (2015), 145-153. DOI10.1016/j.engappai.2014.09.002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.