An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games
Kristal K. Trejo; Julio B. Clempner; Alexander S. Poznyak
Kybernetika (2016)
- Volume: 52, Issue: 2, page 258-279
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topTrejo, Kristal K., Clempner, Julio B., and Poznyak, Alexander S.. "An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games." Kybernetika 52.2 (2016): 258-279. <http://eudml.org/doc/281546>.
@article{Trejo2016,
abstract = {This paper presents a novel approach for computing the strong Stackelberg/Nash equilibrium for Markov chains games. For solving the cooperative $n$-leaders and $m$-followers Markov game we consider the minimization of the $L_\{p\}-$norm that reduces the distance to the utopian point in the Euclidian space. Then, we reduce the optimization problem to find a Pareto optimal solution. We employ a bi-level programming method implemented by the extraproximal optimization approach for computing the strong $L_\{p\}-$Stackelberg/Nash equilibrium. We validate the proposed method theoretically and by a numerical experiment related to marketing strategies for supermarkets.},
author = {Trejo, Kristal K., Clempner, Julio B., Poznyak, Alexander S.},
journal = {Kybernetika},
keywords = {strong equilibrium; Stackelberg and Nash; $L_\{p\}-$norm; Markov chains; strong equilibrium; Stackelberg and Nash; -norm; Markov chains},
language = {eng},
number = {2},
pages = {258-279},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games},
url = {http://eudml.org/doc/281546},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Trejo, Kristal K.
AU - Clempner, Julio B.
AU - Poznyak, Alexander S.
TI - An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 2
SP - 258
EP - 279
AB - This paper presents a novel approach for computing the strong Stackelberg/Nash equilibrium for Markov chains games. For solving the cooperative $n$-leaders and $m$-followers Markov game we consider the minimization of the $L_{p}-$norm that reduces the distance to the utopian point in the Euclidian space. Then, we reduce the optimization problem to find a Pareto optimal solution. We employ a bi-level programming method implemented by the extraproximal optimization approach for computing the strong $L_{p}-$Stackelberg/Nash equilibrium. We validate the proposed method theoretically and by a numerical experiment related to marketing strategies for supermarkets.
LA - eng
KW - strong equilibrium; Stackelberg and Nash; $L_{p}-$norm; Markov chains; strong equilibrium; Stackelberg and Nash; -norm; Markov chains
UR - http://eudml.org/doc/281546
ER -
References
top- Aiyoshi, E., Shimizu, K., 10.1109/tsmc.1981.4308712, IEEE Trans. Systems, Man, and Cybernet. 11 (1981), 444-449. MR0631815DOI10.1109/tsmc.1981.4308712
- Antipin, A. S., An extraproximal method for solving equilibrium programming problems and games., Comput. Math. and Math. Phys. 45 (2005), 11, 1893-1914. MR2203222
- Bard, J., 10.1016/0305-0483(83)90038-5, Omega 11 (1983), 5, 457-468. DOI10.1016/0305-0483(83)90038-5
- Bard, J., 10.1007/978-1-4757-2836-1, Kluwer Academic, Dordrecht 1998. MR1680111DOI10.1007/978-1-4757-2836-1
- Bard, J., Falk, J., 10.1016/0305-0548(82)90007-7, Comput. Oper. Res. 9 (1982), 77-100. MR0768598DOI10.1016/0305-0548(82)90007-7
- Bianco, L., Caramia, M., Giordani, S., 10.1016/j.trc.2008.10.001, Transport. Res. Part C: Emerging Technol. 17 (2009), 2, 175-196. DOI10.1016/j.trc.2008.10.001
- Brotcorne, L., Labb, M., Marcotte, P., Savard, G., 10.1287/trsc.35.4.345.10433, Transport. Sci. 35 (2001), 345-358. DOI10.1287/trsc.35.4.345.10433
- Clempner, J. B., Poznyak, A. S., 10.1007/s11518-014-5260-y, J. Systems Sci. and Systems Engrg. 23 (2014), 4, 439-459. DOI10.1007/s11518-014-5260-y
- Clempner, J. B., Poznyak, A. S., 10.1016/j.eswa.2014.12.034, Expert Systems Appl. 42 (2015), 8, 3967-3979. DOI10.1016/j.eswa.2014.12.034
- Cote, J., Marcotte, P., Savard, G., 10.1057/palgrave.rpm.5170046, J. Revenue and Pricing Management 2 (2003), 1, 23-36. DOI10.1057/palgrave.rpm.5170046
- Deb, K., Sinha, A., 10.1162/evco_a_00015, Evolutionary Comput. J. 18 (2010), 3, 403-449. DOI10.1162/evco_a_00015
- Dempe, S., Discrete Bilevel Optimization Problems., Technical ReportInstitut fur Wirtschaftsinformatik, Universitat Leipzig 2001.
- Dempe, S., Kalashnikov, V., Rios-Mercado, R, 10.1016/j.ejor.2004.01.047, Europ. J. Oper. Res. 166 (2005), 2, 469-488. Zbl1064.90029MR2136379DOI10.1016/j.ejor.2004.01.047
- DeNegre, S., Ralphs, T., 10.1007/978-0-387-88843-9_4, Oper. Res. Cyber-Infrastruct. 47 (2009), 65-78. DOI10.1007/978-0-387-88843-9_4
- Fampa, M., Barroso, L., Candal, D., Simonetti, L., 10.1007/s10589-007-9066-4, Comput. Optim. Appl. 39 (2008), 2, 121-142. Zbl1147.90392MR2373242DOI10.1007/s10589-007-9066-4
- Fortuny-Amat, J., McCarl, B., 10.1057/jors.1981.156, J. Oper. Res. Soc. xx (1981), 783-792. Zbl0459.90067MR0626944DOI10.1057/jors.1981.156
- Germeyer, Y. B., Introduction to the Theory of Operations Research., Nauka, Moscow 1971. MR0327275
- Germeyer, Y. B., Games with Nonantagonistic Interests., Nauka, Moscow 1976.
- Herskovits, J., Leontiev, A., Dias, G., Santos, G., 10.1007/s001580050149, Struct. Multidiscipl. Optim. 20 (2000), 214-221. DOI10.1007/s001580050149
- Koppe, M., Queyranne, M., Ryan, C. T., 10.1007/s10957-010-9668-3, J. Optim. Theory Appl. 146 (2009), 1, 137-150. MR2657828DOI10.1007/s10957-010-9668-3
- Labbe, M., Marcotte, P., Savard, G., 10.1287/mnsc.44.12.1608, Management Sci. 44 (1998), 1608-1622. Zbl0989.90014DOI10.1287/mnsc.44.12.1608
- Lim, C., Smith, J., 10.1287/mnsc.44.12.1608, IIE Trans. 39 (2007), 1, 15-26. DOI10.1287/mnsc.44.12.1608
- Morton, D., Pan, F., Saeger, K., 10.1080/07408170500488956, IIE Trans. 39 (2007), 1, 3-14. DOI10.1080/07408170500488956
- Naoum-Sawaya, J., Elhedhli, S., 10.1007/s10898-010-9585-x, J. Global Optim. 50 (2011), 345-362. Zbl1231.91126MR2799570DOI10.1007/s10898-010-9585-x
- Poznyak, A. S., Advance Mathematical Tools for Automatic Control Engineers. Vol 2 Deterministic Techniques., Elsevier, Amsterdam 2009. MR2582931
- Poznyak, A. S., Najim, K., Gomez-Ramirez, E., Self-Learning Control of Finite Markov Chains., Marcel Dekker, New York 2000. Zbl0960.93001MR1760540
- Salmeron, J., Wood, K., Baldick, R., 10.1109/tpwrs.2004.825888, IEEE Trans. Power Syst. 19 (2004), 2, 905-912. DOI10.1109/tpwrs.2004.825888
- Tanaka, K., 10.1016/0898-1221(89)90135-1, Comp. Math. Appl. 18 (1989), 1-3, 181-188. Zbl0686.90047MR1000409DOI10.1016/0898-1221(89)90135-1
- Tanaka, K., Yokoyama, K., 10.1016/0022-247x(91)90314-p, J. Math. Anal. Appl. 160 (1991), 413-423. MR1126126DOI10.1016/0022-247x(91)90314-p
- Trejo, K. K., Clempner, J. B., Poznyak, A. S., 10.1515/amcs-2015-0026, Int. J. Appl. Math. Computer Sci. 25 (2015), 2, 337-351. MR3363520DOI10.1515/amcs-2015-0026
- Trejo, K. K., Clempner, J. B., Poznyak, A. S., 10.1016/j.engappai.2014.09.002, Engrg. Appl. Artif. Intell. 37 (2015), 145-153. DOI10.1016/j.engappai.2014.09.002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.