On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application

Michał Boczek; Marek Kaluszka

Kybernetika (2016)

  • Volume: 52, Issue: 3, page 329-347
  • ISSN: 0023-5954

Abstract

top
In this paper, we use a new method to obtain the necessary and sufficient condition guaranteeing the validity of the Minkowski-Hölder type inequality for the generalized upper Sugeno integral in the case of functions belonging to a wider class than the comonotone functions. As a by-product, we show that the Minkowski type inequality for seminormed fuzzy integral presented by Daraby and Ghadimi [11] is not true. Next, we study the Minkowski-Hölder inequality for the lower Sugeno integral and the class of μ -subadditive functions introduced in [20]. The results are applied to derive new metrics on the space of measurable functions in the setting of nonadditive measure theory. We also give a partial answer to the open problem 2.22 posed in [5].

How to cite

top

Boczek, Michał, and Kaluszka, Marek. "On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application." Kybernetika 52.3 (2016): 329-347. <http://eudml.org/doc/281548>.

@article{Boczek2016,
abstract = {In this paper, we use a new method to obtain the necessary and sufficient condition guaranteeing the validity of the Minkowski-Hölder type inequality for the generalized upper Sugeno integral in the case of functions belonging to a wider class than the comonotone functions. As a by-product, we show that the Minkowski type inequality for seminormed fuzzy integral presented by Daraby and Ghadimi [11] is not true. Next, we study the Minkowski-Hölder inequality for the lower Sugeno integral and the class of $\mu $-subadditive functions introduced in [20]. The results are applied to derive new metrics on the space of measurable functions in the setting of nonadditive measure theory. We also give a partial answer to the open problem 2.22 posed in [5].},
author = {Boczek, Michał, Kaluszka, Marek},
journal = {Kybernetika},
keywords = {seminormed fuzzy integral; semicopula; monotone measure; Minkowski's inequality; Hölder's inequality; convergence in mean},
language = {eng},
number = {3},
pages = {329-347},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application},
url = {http://eudml.org/doc/281548},
volume = {52},
year = {2016},
}

TY - JOUR
AU - Boczek, Michał
AU - Kaluszka, Marek
TI - On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 3
SP - 329
EP - 347
AB - In this paper, we use a new method to obtain the necessary and sufficient condition guaranteeing the validity of the Minkowski-Hölder type inequality for the generalized upper Sugeno integral in the case of functions belonging to a wider class than the comonotone functions. As a by-product, we show that the Minkowski type inequality for seminormed fuzzy integral presented by Daraby and Ghadimi [11] is not true. Next, we study the Minkowski-Hölder inequality for the lower Sugeno integral and the class of $\mu $-subadditive functions introduced in [20]. The results are applied to derive new metrics on the space of measurable functions in the setting of nonadditive measure theory. We also give a partial answer to the open problem 2.22 posed in [5].
LA - eng
KW - seminormed fuzzy integral; semicopula; monotone measure; Minkowski's inequality; Hölder's inequality; convergence in mean
UR - http://eudml.org/doc/281548
ER -

References

top
  1. Agahi, H., Mesiar, R., Ouyang, Y., 10.1016/j.fss.2009.10.007, Fuzzy Sets and Systems 161 (2010), 708-715. Zbl1183.28027MR2578627DOI10.1016/j.fss.2009.10.007
  2. Agahi, H., Mesiar, R., 10.1007/s00500-014-1578-0, Soft Computing 19 (2015), 1627-1634. DOI10.1007/s00500-014-1578-0
  3. Bassan, B., Spizzichino, F., 10.1016/j.jmva.2004.04.002, J. Multivariate Analysis 93 (2005), 313-339. Zbl1070.60015MR2162641DOI10.1016/j.jmva.2004.04.002
  4. Borzová-Molnárová, J., Halčinová, L., Hutník, O., The smallest semicopula-based universal integrals I: Properties and characterizations., Fuzzy Sets and Systems 271 (2015), 1-17. MR3336136
  5. Borzová-Molnárová, J., Halčinová, L., Hutník, O., The smallest semicopula-based universal integrals II: Convergence theorems., Fuzzy Sets and Systems 271 (2015), 18-30. MR3336137
  6. Borzová-Molnárová, J., Halčinová, L., Hutník, O., The smallest semicopula-based universal integrals III: Topology determined by the integral., Fuzzy Sets and Systems (2016). 
  7. Carothers, N. L., 10.1017/cbo9780511814228, University Press, Cambridge 2000. Zbl0997.26003MR1772332DOI10.1017/cbo9780511814228
  8. Cattaneo, M. E., On maxitive integration., Department of Statistics University of Munich 2013, http://www.stat.uni-muenchen.de. 
  9. Cerdá, J., 10.1090/conm/445/08592, Contemporary Math. 445 (2007), 45-59. Zbl1141.46313MR2381885DOI10.1090/conm/445/08592
  10. Chateauneuf, A., Grabisch, M., Rico, A., 10.1016/j.jmateco.2007.09.003, J. Math. Econom. 44 (2008), 1084-1099. Zbl1152.28331MR2456469DOI10.1016/j.jmateco.2007.09.003
  11. Daraby, B., Ghadimi, F., General Minkowski type and related inequalities for seminormed fuzzy integrals., Sahand Commun. Math. Analysis 1 (2014), 9-20. Zbl1317.26023
  12. Dunford, N., Schwartz, J. T., Linear Operators, Part I General Theory., A Wiley Interscience Publishers, New York 1988. Zbl0635.47001MR1009162
  13. Durante, F., Sempi, C., Semicopulae., Kybernetika 41 (2005), 315-328. Zbl1249.26021MR2181421
  14. Fan, K., 10.1007/bf01174225, Math. Zeitschrift 49 (1944), 681-683. MR0011903DOI10.1007/bf01174225
  15. Föllmer, H., Schied, A., 10.1515/9783110218053, De Gruyter, Berlin 2011. Zbl1126.91028MR2779313DOI10.1515/9783110218053
  16. Fréchet, M., Sur divers modes de convergence d'une suite de fonctions d'une variable., Bull. Calcutta Math. Soc. 11 (1919-20), 187-206. 
  17. Greco, S., Mesiar, R., Rindone, F., Šipeky, L., Superadditive and subadditive transformations of integrals and aggregation functions., Fuzzy Sets and Systems 291 (2016), 40-53. MR3463652
  18. Imaoka, H., 10.1142/s0218488597000403, Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997), 517-529. Zbl1232.68132MR1480749DOI10.1142/s0218488597000403
  19. Kallenberg, O., 10.1007/978-1-4757-4015-8, Springer, Berlin 2002. MR1876169DOI10.1007/978-1-4757-4015-8
  20. Kaluszka, M., Okolewski, A., Boczek, M., 10.1016/j.fss.2013.10.015, Fuzzy Sets and Systems 244 (2014), 51-62. Zbl1315.28013MR3192630DOI10.1016/j.fss.2013.10.015
  21. Kandel, A., Byatt, W. J., 10.1109/proc.1978.11171, Proc. IEEE 66 (1978), 1619-1639. MR0707701DOI10.1109/proc.1978.11171
  22. Klement, E. P., Mesiar, R., Pap, E., 10.1007/978-94-015-9540-7, Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096DOI10.1007/978-94-015-9540-7
  23. Klement, E. P., Mesiar, R., Pap, E., 10.1109/tfuzz.2009.2039367, IEEE Trans. Fuzzy Systems 18 (2010), 178-187. DOI10.1109/tfuzz.2009.2039367
  24. Li, G., 10.1142/s0218488512500109, Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 20 (2012), 211-222. Zbl1242.28028MR2911763DOI10.1142/s0218488512500109
  25. Liu, B., 10.1007/978-3-662-44354-5, Springer 2015. MR3307516DOI10.1007/978-3-662-44354-5
  26. Murofushi, T., 10.1016/s0165-0114(02)00375-5, Fuzzy Sets and Systems 138 (2003), 551-558. Zbl1094.28012MR1998678DOI10.1016/s0165-0114(02)00375-5
  27. Ouyang, Y., Mesiar, R., 10.1016/j.aml.2009.06.024, Applied Math. Lett. 22 (2009), 1810-1815. Zbl1185.28026MR2558545DOI10.1016/j.aml.2009.06.024
  28. Ouyang, Y., Mesiar, R., Agahi, H., 10.1016/j.ins.2010.03.018, Inform. Sci. 180 (2010), 2793-2801. Zbl1193.28016MR2644587DOI10.1016/j.ins.2010.03.018
  29. Pap, E., ed., Handbook of Measure Theory., Elsevier Science, Amsterdam 2002. 
  30. Román-Flores, H., Flores-Franulič, A., Chalco-Cano, Y., 10.1016/j.amc.2006.07.066, Applied Math. Comput. 185 (2007), 492-498. Zbl1116.26024MR2297820DOI10.1016/j.amc.2006.07.066
  31. Rüschendorf, L., 10.1007/978-3-642-33590-7, Springer Science and Business Media, Berlin 2013. Zbl1266.91001MR3051756DOI10.1007/978-3-642-33590-7
  32. Shilkret, N., 10.1016/s1385-7258(71)80017-3, Indagationes Math. 33 (1971), 109-116. Zbl0218.28005MR0288225DOI10.1016/s1385-7258(71)80017-3
  33. García, F. Suárez, Álvarez, P. Gil, 10.1016/0165-0114(86)90028-x, Fuzzy Sets and Systems 18 (1986), 67-81. MR0825620DOI10.1016/0165-0114(86)90028-x
  34. Sugeno, M., Theory of Fuzzy Integrals and its Applications., Ph.D. Dissertation, Tokyo Institute of Technology 1974. 
  35. Wang, Z., Klir, G., 10.1007/978-0-387-76852-6, Springer, New York 2009. Zbl1184.28002MR2453907DOI10.1007/978-0-387-76852-6
  36. Wu, Ch., Rena, X., Wu, C., 10.1016/j.fss.2010.10.006, Fuzzy Sets and Systems 182 (2011), 2-12. MR2825769DOI10.1016/j.fss.2010.10.006
  37. Wu, L., Sun, J., Ye, X., Zhu, L., 10.1016/j.fss.2010.04.017, Fuzzy Sets and Systems 161 (2010), 2337-2347. Zbl1194.28019MR2658037DOI10.1016/j.fss.2010.04.017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.