On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application
Kybernetika (2016)
- Volume: 52, Issue: 3, page 329-347
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBoczek, Michał, and Kaluszka, Marek. "On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application." Kybernetika 52.3 (2016): 329-347. <http://eudml.org/doc/281548>.
@article{Boczek2016,
abstract = {In this paper, we use a new method to obtain the necessary and sufficient condition guaranteeing the validity of the Minkowski-Hölder type inequality for the generalized upper Sugeno integral in the case of functions belonging to a wider class than the comonotone functions. As a by-product, we show that the Minkowski type inequality for seminormed fuzzy integral presented by Daraby and Ghadimi [11] is not true. Next, we study the Minkowski-Hölder inequality for the lower Sugeno integral and the class of $\mu $-subadditive functions introduced in [20]. The results are applied to derive new metrics on the space of measurable functions in the setting of nonadditive measure theory. We also give a partial answer to the open problem 2.22 posed in [5].},
author = {Boczek, Michał, Kaluszka, Marek},
journal = {Kybernetika},
keywords = {seminormed fuzzy integral; semicopula; monotone measure; Minkowski's inequality; Hölder's inequality; convergence in mean},
language = {eng},
number = {3},
pages = {329-347},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application},
url = {http://eudml.org/doc/281548},
volume = {52},
year = {2016},
}
TY - JOUR
AU - Boczek, Michał
AU - Kaluszka, Marek
TI - On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application
JO - Kybernetika
PY - 2016
PB - Institute of Information Theory and Automation AS CR
VL - 52
IS - 3
SP - 329
EP - 347
AB - In this paper, we use a new method to obtain the necessary and sufficient condition guaranteeing the validity of the Minkowski-Hölder type inequality for the generalized upper Sugeno integral in the case of functions belonging to a wider class than the comonotone functions. As a by-product, we show that the Minkowski type inequality for seminormed fuzzy integral presented by Daraby and Ghadimi [11] is not true. Next, we study the Minkowski-Hölder inequality for the lower Sugeno integral and the class of $\mu $-subadditive functions introduced in [20]. The results are applied to derive new metrics on the space of measurable functions in the setting of nonadditive measure theory. We also give a partial answer to the open problem 2.22 posed in [5].
LA - eng
KW - seminormed fuzzy integral; semicopula; monotone measure; Minkowski's inequality; Hölder's inequality; convergence in mean
UR - http://eudml.org/doc/281548
ER -
References
top- Agahi, H., Mesiar, R., Ouyang, Y., 10.1016/j.fss.2009.10.007, Fuzzy Sets and Systems 161 (2010), 708-715. Zbl1183.28027MR2578627DOI10.1016/j.fss.2009.10.007
- Agahi, H., Mesiar, R., 10.1007/s00500-014-1578-0, Soft Computing 19 (2015), 1627-1634. DOI10.1007/s00500-014-1578-0
- Bassan, B., Spizzichino, F., 10.1016/j.jmva.2004.04.002, J. Multivariate Analysis 93 (2005), 313-339. Zbl1070.60015MR2162641DOI10.1016/j.jmva.2004.04.002
- Borzová-Molnárová, J., Halčinová, L., Hutník, O., The smallest semicopula-based universal integrals I: Properties and characterizations., Fuzzy Sets and Systems 271 (2015), 1-17. MR3336136
- Borzová-Molnárová, J., Halčinová, L., Hutník, O., The smallest semicopula-based universal integrals II: Convergence theorems., Fuzzy Sets and Systems 271 (2015), 18-30. MR3336137
- Borzová-Molnárová, J., Halčinová, L., Hutník, O., The smallest semicopula-based universal integrals III: Topology determined by the integral., Fuzzy Sets and Systems (2016).
- Carothers, N. L., 10.1017/cbo9780511814228, University Press, Cambridge 2000. Zbl0997.26003MR1772332DOI10.1017/cbo9780511814228
- Cattaneo, M. E., On maxitive integration., Department of Statistics University of Munich 2013, http://www.stat.uni-muenchen.de.
- Cerdá, J., 10.1090/conm/445/08592, Contemporary Math. 445 (2007), 45-59. Zbl1141.46313MR2381885DOI10.1090/conm/445/08592
- Chateauneuf, A., Grabisch, M., Rico, A., 10.1016/j.jmateco.2007.09.003, J. Math. Econom. 44 (2008), 1084-1099. Zbl1152.28331MR2456469DOI10.1016/j.jmateco.2007.09.003
- Daraby, B., Ghadimi, F., General Minkowski type and related inequalities for seminormed fuzzy integrals., Sahand Commun. Math. Analysis 1 (2014), 9-20. Zbl1317.26023
- Dunford, N., Schwartz, J. T., Linear Operators, Part I General Theory., A Wiley Interscience Publishers, New York 1988. Zbl0635.47001MR1009162
- Durante, F., Sempi, C., Semicopulae., Kybernetika 41 (2005), 315-328. Zbl1249.26021MR2181421
- Fan, K., 10.1007/bf01174225, Math. Zeitschrift 49 (1944), 681-683. MR0011903DOI10.1007/bf01174225
- Föllmer, H., Schied, A., 10.1515/9783110218053, De Gruyter, Berlin 2011. Zbl1126.91028MR2779313DOI10.1515/9783110218053
- Fréchet, M., Sur divers modes de convergence d'une suite de fonctions d'une variable., Bull. Calcutta Math. Soc. 11 (1919-20), 187-206.
- Greco, S., Mesiar, R., Rindone, F., Šipeky, L., Superadditive and subadditive transformations of integrals and aggregation functions., Fuzzy Sets and Systems 291 (2016), 40-53. MR3463652
- Imaoka, H., 10.1142/s0218488597000403, Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997), 517-529. Zbl1232.68132MR1480749DOI10.1142/s0218488597000403
- Kallenberg, O., 10.1007/978-1-4757-4015-8, Springer, Berlin 2002. MR1876169DOI10.1007/978-1-4757-4015-8
- Kaluszka, M., Okolewski, A., Boczek, M., 10.1016/j.fss.2013.10.015, Fuzzy Sets and Systems 244 (2014), 51-62. Zbl1315.28013MR3192630DOI10.1016/j.fss.2013.10.015
- Kandel, A., Byatt, W. J., 10.1109/proc.1978.11171, Proc. IEEE 66 (1978), 1619-1639. MR0707701DOI10.1109/proc.1978.11171
- Klement, E. P., Mesiar, R., Pap, E., 10.1007/978-94-015-9540-7, Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096DOI10.1007/978-94-015-9540-7
- Klement, E. P., Mesiar, R., Pap, E., 10.1109/tfuzz.2009.2039367, IEEE Trans. Fuzzy Systems 18 (2010), 178-187. DOI10.1109/tfuzz.2009.2039367
- Li, G., 10.1142/s0218488512500109, Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 20 (2012), 211-222. Zbl1242.28028MR2911763DOI10.1142/s0218488512500109
- Liu, B., 10.1007/978-3-662-44354-5, Springer 2015. MR3307516DOI10.1007/978-3-662-44354-5
- Murofushi, T., 10.1016/s0165-0114(02)00375-5, Fuzzy Sets and Systems 138 (2003), 551-558. Zbl1094.28012MR1998678DOI10.1016/s0165-0114(02)00375-5
- Ouyang, Y., Mesiar, R., 10.1016/j.aml.2009.06.024, Applied Math. Lett. 22 (2009), 1810-1815. Zbl1185.28026MR2558545DOI10.1016/j.aml.2009.06.024
- Ouyang, Y., Mesiar, R., Agahi, H., 10.1016/j.ins.2010.03.018, Inform. Sci. 180 (2010), 2793-2801. Zbl1193.28016MR2644587DOI10.1016/j.ins.2010.03.018
- Pap, E., ed., Handbook of Measure Theory., Elsevier Science, Amsterdam 2002.
- Román-Flores, H., Flores-Franulič, A., Chalco-Cano, Y., 10.1016/j.amc.2006.07.066, Applied Math. Comput. 185 (2007), 492-498. Zbl1116.26024MR2297820DOI10.1016/j.amc.2006.07.066
- Rüschendorf, L., 10.1007/978-3-642-33590-7, Springer Science and Business Media, Berlin 2013. Zbl1266.91001MR3051756DOI10.1007/978-3-642-33590-7
- Shilkret, N., 10.1016/s1385-7258(71)80017-3, Indagationes Math. 33 (1971), 109-116. Zbl0218.28005MR0288225DOI10.1016/s1385-7258(71)80017-3
- García, F. Suárez, Álvarez, P. Gil, 10.1016/0165-0114(86)90028-x, Fuzzy Sets and Systems 18 (1986), 67-81. MR0825620DOI10.1016/0165-0114(86)90028-x
- Sugeno, M., Theory of Fuzzy Integrals and its Applications., Ph.D. Dissertation, Tokyo Institute of Technology 1974.
- Wang, Z., Klir, G., 10.1007/978-0-387-76852-6, Springer, New York 2009. Zbl1184.28002MR2453907DOI10.1007/978-0-387-76852-6
- Wu, Ch., Rena, X., Wu, C., 10.1016/j.fss.2010.10.006, Fuzzy Sets and Systems 182 (2011), 2-12. MR2825769DOI10.1016/j.fss.2010.10.006
- Wu, L., Sun, J., Ye, X., Zhu, L., 10.1016/j.fss.2010.04.017, Fuzzy Sets and Systems 161 (2010), 2337-2347. Zbl1194.28019MR2658037DOI10.1016/j.fss.2010.04.017
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.