Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form
Esmaeil Abedi; Reyhane Bahrami Ziabari; Mukut Mani Tripathi
Archivum Mathematicum (2016)
- Volume: 052, Issue: 2, page 113-130
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAbedi, Esmaeil, Ziabari, Reyhane Bahrami, and Tripathi, Mukut Mani. "Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form." Archivum Mathematicum 052.2 (2016): 113-130. <http://eudml.org/doc/281551>.
@article{Abedi2016,
abstract = {We introduce a conformal Sasakian manifold and we find the inequality involving Ricci curvature and the squared mean curvature for semi-invariant, almost semi-invariant, $\theta $-slant, invariant and anti-invariant submanifolds tangent to the Reeb vector field and the equality cases are also discussed. Also the inequality involving scalar curvature and the squared mean curvature of some submanifolds of a conformal Sasakian space form are obtained.},
author = {Abedi, Esmaeil, Ziabari, Reyhane Bahrami, Tripathi, Mukut Mani},
journal = {Archivum Mathematicum},
keywords = {Ricci curvature; scalar curvature; squared mean curvature; conformal Sasakian space form},
language = {eng},
number = {2},
pages = {113-130},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form},
url = {http://eudml.org/doc/281551},
volume = {052},
year = {2016},
}
TY - JOUR
AU - Abedi, Esmaeil
AU - Ziabari, Reyhane Bahrami
AU - Tripathi, Mukut Mani
TI - Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 2
SP - 113
EP - 130
AB - We introduce a conformal Sasakian manifold and we find the inequality involving Ricci curvature and the squared mean curvature for semi-invariant, almost semi-invariant, $\theta $-slant, invariant and anti-invariant submanifolds tangent to the Reeb vector field and the equality cases are also discussed. Also the inequality involving scalar curvature and the squared mean curvature of some submanifolds of a conformal Sasakian space form are obtained.
LA - eng
KW - Ricci curvature; scalar curvature; squared mean curvature; conformal Sasakian space form
UR - http://eudml.org/doc/281551
ER -
References
top- Bejancu, A., Geometry of CR-submanifolds, Mathematics and its Applications (East European Series), vol. 23, D. Reidel Publishing Co., Dordrecht, 1986. (1986) Zbl0605.53001MR0861408
- Blair, D.E., Contact manifolds in Riemannian geometry, Math., vol. 509, Springer-Verlag, New York, 1976. (1976) Zbl0319.53026MR0467588
- Blair, D.E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, vol. 203, Birkhauser Boston, Inc., Boston, MA, 2002. (2002) Zbl1011.53001MR1874240
- Cabrerizo, J.L., Carriazo, A., Fernandez, L.M., Fernandez, M., 10.1017/S0017089500010156, Glasgow Math. J. 42 (1) (2000), 125–138. (2000) Zbl0957.53022MR1739684DOI10.1017/S0017089500010156
- Chen, B.Y., 10.1007/BF01236084, Arch. Math. (Basel) 60 (6) (1993), 568–578. (1993) Zbl0811.53060MR1216703DOI10.1007/BF01236084
- Chen, B.Y., 10.1017/S001708950003130X, Glasgow Math. J. 38 (1996), 87–97. (1996) MR1373963DOI10.1017/S001708950003130X
- Chen, B.Y., 10.1017/S0017089599970271, Glasgow Math. J. 41 (1999), 33–41. (1999) Zbl0962.53015MR1689730DOI10.1017/S0017089599970271
- Chen, B.Y., 10.1007/PL00000420, Arch. Math. (Basel) 74 (2000), 154–160. (2000) Zbl1037.53041MR1735232DOI10.1007/PL00000420
- Defever, F., Mihai, I., Verstrelen, L., B.Y.Chen’s inequality for -totally real submanifolds of Sasakian space forms, Boll. Un. Mat. Ital. B (7) 11 (1997), 365–374. (1997) MR1459285
- Hong, S., Tripathi, M.M., On Ricci curvature of submanifolds, Internat. J. Pure Appl. Math. Sci. 2 (2) (2005), 227–245. (2005) Zbl1131.53309MR2294062
- Hong, S., Tripathi, M.M., On Ricci curvature of submanifolds of generalized Sasakian space forms, Internat. J. Pure Appl. Math. Sci. 2 (2) (2005), 173–201. (2005) Zbl1131.53308MR2294058
- Hong, S., Tripathi, M.M., Ricci curvature of submanifolds of a Sasakian space form, Iranian Journal of Mathematical Sciences and Informatics 1 (2) (2006), 31–51. (2006) Zbl1301.53051MR2294062
- Mihai, I., 10.1017/S1446788700003888, J. Austral. Math. Soc. 72 (2002), 247–256. (2002) Zbl1017.53052MR1887135DOI10.1017/S1446788700003888
- Petersen, P., Riemannian geometry, Springer-Verlag, 2006. (2006) Zbl1220.53002MR2243772
- Tripathi, M.M., Almost semi-invariant submanifolds of trans-Sasakian manifolds, J. Indian Math. Soc. (N.S.) 62 (1–4) (1996), 225–245. (1996) Zbl0901.53040MR1458496
- Vaisman, I., Conformal changes of almost contact metric structures, Geometry and Differential Geometry, Lecture Notes in Math., vol. 792, 1980, pp. 435–443. (1980) Zbl0431.53030MR0585886
- Yamaguchi, S., Kon, M., Ikawa, T., 10.4310/jdg/1214433297, J. Differential Geom. 11 (1) (1976), 59–64. (1976) MR0405294DOI10.4310/jdg/1214433297
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.