Generalized fractional integrals on central Morrey spaces and generalized λ-CMO spaces
Banach Center Publications (2014)
- Volume: 102, Issue: 1, page 181-188
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topKatsuo Matsuoka. "Generalized fractional integrals on central Morrey spaces and generalized λ-CMO spaces." Banach Center Publications 102.1 (2014): 181-188. <http://eudml.org/doc/281704>.
@article{KatsuoMatsuoka2014,
abstract = {We introduce the generalized fractional integrals $Ĩ_\{α,d\}$ and prove the strong and weak boundedness of $Ĩ_\{α,d\}$ on the central Morrey spaces $B^\{p,λ\}(ℝⁿ)$. In order to show the boundedness, the generalized λ-central mean oscillation spaces $Λ^\{(d)\}_\{p,λ\}(ℝⁿ)$ and the generalized weak λ-central mean oscillation spaces $WΛ^\{(d)\}_\{p,λ\}(ℝⁿ)$ play an important role.},
author = {Katsuo Matsuoka},
journal = {Banach Center Publications},
keywords = {generalized fractional integrals; central Morrey spaces; generalized -CMO spaces},
language = {eng},
number = {1},
pages = {181-188},
title = {Generalized fractional integrals on central Morrey spaces and generalized λ-CMO spaces},
url = {http://eudml.org/doc/281704},
volume = {102},
year = {2014},
}
TY - JOUR
AU - Katsuo Matsuoka
TI - Generalized fractional integrals on central Morrey spaces and generalized λ-CMO spaces
JO - Banach Center Publications
PY - 2014
VL - 102
IS - 1
SP - 181
EP - 188
AB - We introduce the generalized fractional integrals $Ĩ_{α,d}$ and prove the strong and weak boundedness of $Ĩ_{α,d}$ on the central Morrey spaces $B^{p,λ}(ℝⁿ)$. In order to show the boundedness, the generalized λ-central mean oscillation spaces $Λ^{(d)}_{p,λ}(ℝⁿ)$ and the generalized weak λ-central mean oscillation spaces $WΛ^{(d)}_{p,λ}(ℝⁿ)$ play an important role.
LA - eng
KW - generalized fractional integrals; central Morrey spaces; generalized -CMO spaces
UR - http://eudml.org/doc/281704
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.