Asymptotic rate of convergence in the degenerate U-statistics of second order

Olga Yanushkevichiene

Banach Center Publications (2010)

  • Volume: 90, Issue: 1, page 275-284
  • ISSN: 0137-6934

Abstract

top
Let X,X₁,...,Xₙ be independent identically distributed random variables taking values in a measurable space (Θ,ℜ ). Let h(x,y) and g(x) be real valued measurable functions of the arguments x,y ∈ Θ and let h(x,y) be symmetric. We consider U-statistics of the type T ( X , . . . , X ) = n - 1 1 i L e t q i ( i 1 ) b e e i g e n v a l u e s o f t h e H i l b e r t - S c h m i d t o p e r a t o r a s s o c i a t e d w i t h t h e k e r n e l h ( x , y ) , a n d q b e t h e l a r g e s t i n a b s o l u t e v a l u e o n e . W e p r o v e t h a t Δn = ρ(T(X₁,...,Xₙ),T(G₁,..., Gₙ)) ≤ (cβ’1/6)/(√(|q₁|) n1/12) , where G i , 1 ≤ i ≤ n, are i.i.d. Gaussian random vectors, ρ is the Kolmogorov (or uniform) distance and β ' : = E | h ( X , X ) | ³ + E | h ( X , X ) | 18 / 5 + E | g ( X ) | ³ + E | g ( X ) | 18 / 5 + 1 < .

How to cite

top

Olga Yanushkevichiene. "Asymptotic rate of convergence in the degenerate U-statistics of second order." Banach Center Publications 90.1 (2010): 275-284. <http://eudml.org/doc/281795>.

@article{OlgaYanushkevichiene2010,
abstract = {Let X,X₁,...,Xₙ be independent identically distributed random variables taking values in a measurable space (Θ,ℜ ). Let h(x,y) and g(x) be real valued measurable functions of the arguments x,y ∈ Θ and let h(x,y) be symmetric. We consider U-statistics of the type $T(X₁,...,Xₙ) = n^\{-1\} ∑_\{1≤i Let q_i (i ≥ 1) be eigenvalues of the Hilbert-Schmidt operator associated with the kernel h(x,y), and q₁ be the largest in absolute value one. We prove that \}$Δn = ρ(T(X₁,...,Xₙ),T(G₁,..., Gₙ)) ≤ (cβ’1/6)/(√(|q₁|) n1/12)$, $where $G_i$, 1 ≤ i ≤ n, are i.i.d. Gaussian random vectors, ρ is the Kolmogorov (or uniform) distance and $β^\{\prime \}: = E|h(X,X₁)|³ + E|h(X,X₁)|^\{18/5\} + E|g(X)|³ + E|g(X)|^\{18/5\} + 1 < ∞$.},
author = {Olga Yanushkevichiene},
journal = {Banach Center Publications},
keywords = {Kolmogorov distance; eigenvalues},
language = {eng},
number = {1},
pages = {275-284},
title = {Asymptotic rate of convergence in the degenerate U-statistics of second order},
url = {http://eudml.org/doc/281795},
volume = {90},
year = {2010},
}

TY - JOUR
AU - Olga Yanushkevichiene
TI - Asymptotic rate of convergence in the degenerate U-statistics of second order
JO - Banach Center Publications
PY - 2010
VL - 90
IS - 1
SP - 275
EP - 284
AB - Let X,X₁,...,Xₙ be independent identically distributed random variables taking values in a measurable space (Θ,ℜ ). Let h(x,y) and g(x) be real valued measurable functions of the arguments x,y ∈ Θ and let h(x,y) be symmetric. We consider U-statistics of the type $T(X₁,...,Xₙ) = n^{-1} ∑_{1≤i Let q_i (i ≥ 1) be eigenvalues of the Hilbert-Schmidt operator associated with the kernel h(x,y), and q₁ be the largest in absolute value one. We prove that }$Δn = ρ(T(X₁,...,Xₙ),T(G₁,..., Gₙ)) ≤ (cβ’1/6)/(√(|q₁|) n1/12)$, $where $G_i$, 1 ≤ i ≤ n, are i.i.d. Gaussian random vectors, ρ is the Kolmogorov (or uniform) distance and $β^{\prime }: = E|h(X,X₁)|³ + E|h(X,X₁)|^{18/5} + E|g(X)|³ + E|g(X)|^{18/5} + 1 < ∞$.
LA - eng
KW - Kolmogorov distance; eigenvalues
UR - http://eudml.org/doc/281795
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.