Infinite dimensional Gegenbauer functionals
Abdessatar Barhoumi; Habib Ouerdiane; Anis Riahi
Banach Center Publications (2007)
- Volume: 78, Issue: 1, page 35-45
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topAbdessatar Barhoumi, Habib Ouerdiane, and Anis Riahi. "Infinite dimensional Gegenbauer functionals." Banach Center Publications 78.1 (2007): 35-45. <http://eudml.org/doc/282199>.
@article{AbdessatarBarhoumi2007,
abstract = {he paper is devoted to investigation of Gegenbauer white noise functionals. A particular attention is paid to the construction of the infinite dimensional Gegenbauer white noise measure $_\{β\}$, via the Bochner-Minlos theorem, on a suitable nuclear triple. Then we give the chaos decomposition of the L²-space with respect to the measure $_\{β\}$ by using the so-called β-type Wick product.},
author = {Abdessatar Barhoumi, Habib Ouerdiane, Anis Riahi},
journal = {Banach Center Publications},
keywords = {Gegenbauer polynomials; Gegenbauer white noise measure; Wiener–Itô isometry},
language = {eng},
number = {1},
pages = {35-45},
title = {Infinite dimensional Gegenbauer functionals},
url = {http://eudml.org/doc/282199},
volume = {78},
year = {2007},
}
TY - JOUR
AU - Abdessatar Barhoumi
AU - Habib Ouerdiane
AU - Anis Riahi
TI - Infinite dimensional Gegenbauer functionals
JO - Banach Center Publications
PY - 2007
VL - 78
IS - 1
SP - 35
EP - 45
AB - he paper is devoted to investigation of Gegenbauer white noise functionals. A particular attention is paid to the construction of the infinite dimensional Gegenbauer white noise measure $_{β}$, via the Bochner-Minlos theorem, on a suitable nuclear triple. Then we give the chaos decomposition of the L²-space with respect to the measure $_{β}$ by using the so-called β-type Wick product.
LA - eng
KW - Gegenbauer polynomials; Gegenbauer white noise measure; Wiener–Itô isometry
UR - http://eudml.org/doc/282199
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.