On equivalence relations second order definable over H(κ)

Saharon Shelah; Pauli Vaisanen

Fundamenta Mathematicae (2002)

  • Volume: 174, Issue: 1, page 1-21
  • ISSN: 0016-2736

Abstract

top
Let κ be an uncountable regular cardinal. Call an equivalence relation on functions from κ into 2 second order definable over H(κ) if there exists a second order sentence ϕ and a parameter P ⊆ H(κ) such that functions f and g from κ into 2 are equivalent iff the structure ⟨ H(κ), ∈, P, f, g ⟩ satisfies ϕ. The possible numbers of equivalence classes of second order definable equivalence relations include all the nonzero cardinals at most κ⁺. Additionally, the possibilities are closed under unions and products of at most κ cardinals. We prove that these are the only restrictions: Assuming that GCH holds and λ is a cardinal with λ κ = λ , there exists a generic extension where all the cardinals are preserved, there are no new subsets of cardinality < κ, 2 κ = λ , and for all cardinals μ, the number of equivalence classes of some second order definable equivalence relation on functions from κ into 2 is μ iff μ is in Ω, where Ω is any prearranged subset of λ such that 0 ∉ Ω, Ω contains all the nonzero cardinals ≤ κ⁺, and Ω is closed under unions and products of at most κ cardinals.

How to cite

top

Saharon Shelah, and Pauli Vaisanen. "On equivalence relations second order definable over H(κ)." Fundamenta Mathematicae 174.1 (2002): 1-21. <http://eudml.org/doc/282598>.

@article{SaharonShelah2002,
abstract = {Let κ be an uncountable regular cardinal. Call an equivalence relation on functions from κ into 2 second order definable over H(κ) if there exists a second order sentence ϕ and a parameter P ⊆ H(κ) such that functions f and g from κ into 2 are equivalent iff the structure ⟨ H(κ), ∈, P, f, g ⟩ satisfies ϕ. The possible numbers of equivalence classes of second order definable equivalence relations include all the nonzero cardinals at most κ⁺. Additionally, the possibilities are closed under unions and products of at most κ cardinals. We prove that these are the only restrictions: Assuming that GCH holds and λ is a cardinal with $λ^κ = λ$, there exists a generic extension where all the cardinals are preserved, there are no new subsets of cardinality < κ, $2^κ = λ$, and for all cardinals μ, the number of equivalence classes of some second order definable equivalence relation on functions from κ into 2 is μ iff μ is in Ω, where Ω is any prearranged subset of λ such that 0 ∉ Ω, Ω contains all the nonzero cardinals ≤ κ⁺, and Ω is closed under unions and products of at most κ cardinals.},
author = {Saharon Shelah, Pauli Vaisanen},
journal = {Fundamenta Mathematicae},
keywords = {second order definable equivalence relations; number of models; infinitary logic},
language = {eng},
number = {1},
pages = {1-21},
title = {On equivalence relations second order definable over H(κ)},
url = {http://eudml.org/doc/282598},
volume = {174},
year = {2002},
}

TY - JOUR
AU - Saharon Shelah
AU - Pauli Vaisanen
TI - On equivalence relations second order definable over H(κ)
JO - Fundamenta Mathematicae
PY - 2002
VL - 174
IS - 1
SP - 1
EP - 21
AB - Let κ be an uncountable regular cardinal. Call an equivalence relation on functions from κ into 2 second order definable over H(κ) if there exists a second order sentence ϕ and a parameter P ⊆ H(κ) such that functions f and g from κ into 2 are equivalent iff the structure ⟨ H(κ), ∈, P, f, g ⟩ satisfies ϕ. The possible numbers of equivalence classes of second order definable equivalence relations include all the nonzero cardinals at most κ⁺. Additionally, the possibilities are closed under unions and products of at most κ cardinals. We prove that these are the only restrictions: Assuming that GCH holds and λ is a cardinal with $λ^κ = λ$, there exists a generic extension where all the cardinals are preserved, there are no new subsets of cardinality < κ, $2^κ = λ$, and for all cardinals μ, the number of equivalence classes of some second order definable equivalence relation on functions from κ into 2 is μ iff μ is in Ω, where Ω is any prearranged subset of λ such that 0 ∉ Ω, Ω contains all the nonzero cardinals ≤ κ⁺, and Ω is closed under unions and products of at most κ cardinals.
LA - eng
KW - second order definable equivalence relations; number of models; infinitary logic
UR - http://eudml.org/doc/282598
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.